
PVTM White Paper-2016

www.pontusvision.com March 2016 Page 1

PVTM Architectural White Paper

Introduction

PVTM is an acronym for Pontus Vision Thread Manager. PVTM accelerates software by optimizing

the execution layout of threads on a server, and often doing so on less hardware.

PVTM improves the performance of a variety of applications, from trading systems to Relational

Databases and data analytics.

In addition to this document, readers can get additional information on PVTM by viewing the

following two videos:

http://www.pontusvision.com/thread-manager-threadmanager/threadmanager-powerpoint-video/

http://www.pontusvision.com/thread-manager-threadmanager/pvtm-thread-manager-gui-quick-tour/

The White Paper is sub-divided into the following sections:

Introduction

Abstract

What is the logic behind PVTM?

How much delay in a single server?

Threads vs Processes

In-house vs Third Party applications

How does it work?

Benchmarks

Conclusion

http://www.pontusvision.com/
http://www.pontusvision.com/thread-manager-threadmanager/threadmanager-powerpoint-video/
http://www.pontusvision.com/thread-manager-threadmanager/pvtm-thread-manager-gui-quick-tour/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 2

Abstract

We have adapted resource scheduling techniques used to optimize seating arrangements in trains,

airplanes, and even offices, and adapted them to computer systems. Rather than arranging the

most efficient arrangement for office workers in teams to best communicate with each other, we

are arranging the most efficient layout of threads. We move the threads that communicate with

each other so they can sit on the closest hardware cores to reduce communication overheads.

An automated way of speeding up software applications has long been a holy grail of computing

and information technology, but there has usually been a caveat or two. An example of this is the

promised of 10X, 100X or 1000X performance boost by porting your application to a GPGPU, or

Intel Xeon Phi. The caveats here are:

a) You have to port the application to a new hardware architecture

b) You have to vectorise the application to take advantage of the inherent parallelism of the

new computational unit

c) You must have access to the source code of the application

d) Software engineers who can vectorise code efficiently are rare beasts indeed.

Given the points, a) – d) above, the number of such applications which have been successfully

ported to, either GPGPU or Xeon Phi and are in a production environment is tiny compared to the

effort exerted in the attempt.

PVTM speeds up software applications by better placing software threads onto hardware cores to

maximise performance. A secondary advantage, (which is arguably as important), is that it

maximises hardware utilization too. PVTM does all this without any of the caveats above.

What is the logic behind PVTM?

Modern operating systems (OSs) on modern NUMA (non-uniform memory access) servers are not

very good at managing threads for performance-sensitive apps. OSs typically balance the load

across various cores rather than focus on application performance. When dealing with

performance-sensitive applications, balancing the load across various cores causes application

latency to increase significantly.

As an example, in Figure 1 below, there are two Four-CPU servers running the same workload.

This hypothetical example shows a pipeline with seven steps. The OS on the left server distributes

the red threads across all CPUs in a round robin fashion; by doing this, the distances for data

movement are much greater. Therefore, the time to move data between the threads is several

times greater than in the server on the right. For many applications, constraining the threads to

fewer CPUs can significantly increase performance.

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 3

Figure 1 - Scheduler behaviour with and without PVTM

PVTM improves the probability that software threads will use less time to communicate with each

other. PVTM places threads that have high levels of communication as close to each other as

possible whilst at the same time avoiding context switches. To achieve this, PVTM captures the

following information about the system:

 Firstly, PVTM analyses the target hardware layout figuring out which cores are closest to

each other.

 Secondly, it analyses the communication patterns between threads including which threads

use sockets, shared memory and locks to talk to each other.

 Thirdly, PVTM captures the CPU utilization and current location of each thread, as well as

optionally the position of I/O devices, such as disks and network cards.

PVTM then sends all this information to a simulator that applies a performance score to the

system. The score penalizes threads that have strong communication links to each other, but that

are located in cores that have long relative distances to each other. The score also penalizes

context switches by avoiding moving active threads to the same core as other active threads as

much as possible. The simulator is then capable of running millions of what-if analysis to

determine a thread execution layout that improves the score as much as possible.

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 4

How much delay in a single server?

Most people think that the delays inside of a single server are negligible; however, the cumulative

effect of these delays is very large. The speed at which threads communicate with each other can

be over one hundred (100) times slower depending on which cores they are running in a single

server. The relative distance between the CPU cores and their memory access affects how quickly

data can move between threads.

The following DISTANCE RATIO TABLE shows rough relative speeds of sending data between

threads measured on a four CPU server. This table reflects the access speed of memory in

different cores, as well as the amount of time that it takes to re-fetch data from main memory if

not cached. Access speed is relatively fast when the CPU accesses data stored in level 1, level 2

and level 3 caches. The access speed is slower when the CPU accesses local memory, and even

slower when the CPU access remote memory from a neighbouring CPU.

DISTANCE RATIO TABLE

Level 1

Cache

Level 2 Cache Level 3 Cache Local Memory Remote

Memory

No-Cross

Bridge

Memory

1 2 6 10 83 113

It is important to notice that these speeds can vary dramatically depending on the thread

behaviour. As such, applications will seldom always run at the fastest speed or at the lowest

speed. As the Intel Haswell stats below show, the time to access memory can vary from 4 cycles

to access L1 to over 45 cycles plus around 57ns to access main memory. If a thread never

moved, and always accessed memory that was within the TLB and in L1 cache, it would use

around 4-5 cycles to access the data. In contrast, a thread constantly being moved across cores

(in the same CPU) would be missing L1/L2 cached data, having to go to L3 or main memory and

having its TLB trashed would use 36 + 9 + 57ns to access the data. In reality, threads will never

behave as perfectly as the 4-5 cycles 100% of the time; however, when threads are not pinned,

they tend to be constantly in the misbehaved state. By pinning threads in place, PVTM is trying to

increase the chances of the good 4-5 cycle behaviour.

Here are some stats for Intel’s Haswell processor:

 L1 Data Cache Latency = 4 cycles for simple access via pointer

 L1 Data Cache Latency = 5 cycles for access with complex address calculation (size_t n,

*p; n = p[n]).

 L2 Cache Latency = 12 cycles

 L3 Cache Latency = 36 cycles

 RAM Latency = 36 cycles + ~ 57 ns

 L1 Data TLB - miss penalty of 1-8 Cycles , with 4x1Gb/ 32x2Mb / 64x4Kb entries

 L2 Data TLB - miss penalty of 9 -22 cycles with 1024 2Mb / 1024 x 4Kb entries

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 5

Threads vs Processes

Note that up to this point, we have not mentioned processes, but rather threads. It is easy to

confuse the two terms, process and thread. As the name implies, PVTM works at a thread level,

and largely does not really care much about the process boundaries. PVTM can equally

optimize single-threaded processes, or multi-threaded processes, or any combinations

thereof.

In most modern operating systems, the main distinction between a few single-threaded processes

and a multi-threaded process is their rights to access memory. Threads within a single process

can access the same memory area directly, whereas threads that reside in different processes

have to make special calls to use shared memory. Many single-threaded applications use shared

memory to communicate; similarly, many multi-threaded applications use other inter-process

communication (IPC) mechanisms such as sockets or named pipes between their threads. The

reasons and merits of using single-threaded architectures vs multi-threaded architectures and

their IPC mechanisms vary dramatically, and it is beyond the scope of this document to discuss

them.

PVTM’s model makes no distinction between two threads that belong to the same process and

decide to use futex locks to lock a shared memory area, and two threads that belong to different

processes, and use futex locks to lock a shared memory area. As long as there is a strong

communication pattern between the threads, we do not really care to which process they belong.

In-house vs Third Party apps

PVTM works with in-house, third party apps, brand new apps and legacy apps equally. PVTM is

also agnostic to which computer language is used. PVTM captures low-level system calls to

determine which threads communicate with each other. It behaves like a high-performance

profiler that captures basic system calls with little overhead to the system. Because these calls

are at quite a low-level, PVTM can easily figure out inter-thread patterns between threads in

languages as diverse as C, C++, Java, R, Perl, C#, Python, and any other higher level language,

as long as the applications are dynamically-linked against the system calls.

How does it work?

As seen in Figure 2 below, PONTUS VISION Thread Manager (PVTM) has 3 main components:

1) PVTM Agent – (pvtm-agent) – A lightweight single threaded agent that collects information

about the hardware, and discovers the data communication patterns between threads. PVTM

Agent is written in C, and usually uses < 1% CPU to capture its data. To aid PVTM Agent

discover the thread pinning strategies, the following components may also be used:

a) libpvtm-agent-preload.so – On Linux, a library that can help the PVTM Agent discover

communication patterns between threads. This can be injected in existing applications

without recompiling them by using the LD_PRELOAD environment variable.

b) pvtm-agent.jar – an optional java agent file that exposes the names of Java threads to the

operating system. To use this, you need to change your JVM command line to add the -

javaagent:<path to the pvtm-agent.jar file>.

c) pvtm-agent-preload-windows.dll – On Windows, a library that PVTM Agent discovers

communication patterns between threads. PVTM Agent automatically connects to the

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 6

applications that need to be monitored using this DLL along with remote debugging

techniques

2) PVTM Simulator / Thread Manager – (run-threadmgr.sh) – a Java 7 standalone simulation

engine that receives TCP/IP connections from PVTM Agent, and can take the hardware

information, as well as the data communication patterns between the threads to produce an

optimal layout of software threads on the hardware cores.

3) PVTM GUI Server (run-server.sh) – a self-contained server that hosts a browser-based

graphical user interface. The GUI enables users to visualize the layout of the threads, and

produce scripts for static thread pinning configurations. Users can use this in environments

where PVTM Agent is unable to run.

Figure 2 - PVTM Architecture

(1) Target Hardware

(2) Software

Agent

(4) Apply Thread Pinning

(3) Score / Run Simulation

Simulator

GUI

(5) Query / Off-line sims

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 7

A major investment bank

was co-locating an FX

trading platform with their

liquidity venues.

The system comprised a

mix of C, C++ and Java

components, with some

developed in-house, and

others by third-party

vendors. PVTM collapsed

apps running on 10

servers down to one,

delivering a 50% CapEx

reduction.

PVTM also improved the

platform’s latency by

270%.

Benchmarks

FX Trading platform

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 8

IBM DataStage, ETL & MDM tool

IBM’s DataStage is a

closed-source extract,

transfer, load (ETL) and

master data management

(MDM) analytics tool.

The use case shows a

retail bank that has

thousands of databases

with duplicated customer

names that need to be

de-duplicated daily.

This normally takes

~10 hours to complete;

PVTM reduced this

to ~7 hours.

The ETL workflow to the

left was used to reproduce

the workload in

production. The graph

below the workflow shows

the run-times for several

batches with (red) and

without (blue) PVTM.

PVTM made the batches

run faster by

26% on average, and

66% on peak periods of

activity (e.g. start of day).

Performance improvements

Min & Avg - 26% better

Max - 66 % better

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 9

PostgreSQL PGbench

PGbench is an open

source, benchmark which

simulates a retail bank

with 100,000 bank

accounts and 10 tellers.

PVTM increased TPS by

19.5% and reduced

latency by the same

margin; the staggering

improvement was a

193.8% reduction in

standard deviation,

showing the capability of

PVTM to deliver highly

deterministic results.

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 10

Market Data connectivity suite

This case study shows performance improvements in a widely used market data pricing platform in the

financial services industry. The graph above shows how PVTM enabled the system to perform with a

91% decrease in average latency and 349% decrease in standard deviation compared to a

sample RHEL 7.1 system using the ‘network-latency’ profile for ‘tuned’, and the kernel’s NUMA-

optimized scheduler as a baseline (but without any thread pinning applied).

These figures were measured using the vendors’ own tools shipped with the product using a 10K

msg/sec rate, which is traditionally very difficult to optimize for latency because of the large gaps in

between messages.

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

La
te

n
cy

 (
u

s)
 -

 lo
w

er
 b

et
te

r

Data Point Numbers
(as a time series)

Baseline

PVTM

http://www.pontusvision.com/

PVTM White Paper-2016

www.pontusvision.com March 2016 Page 11

Conclusion

As seen by the benchmarks above, Pontus Vision Thread Manager (PVTM) speeds up a diverse

range of software applications; however we are still in a journey of discovery to find out which

applications respond the best to thread pinning. During our various benchmarks, customers

noticed that a lot of the statistics that PVTM captures also provide very good diagnostics of

bottlenecks, which also help improve other areas of performance. Before embarking in any serious

benchmark, it is important to see whether the system under test is suitable for thread pinning.

During a proof of concept, we can quite quickly determine whether the hardware and the

application are suitable for thread pinning. As a rule of thumb, if applications have fewer active

threads than the number of cores on the server, they should be able to benefit enormously from

PVTM.

http://www.pontusvision.com/

	Introduction
	How much delay in a single server?
	Threads vs Processes
	In-house vs Third Party applications
	How does it work?
	Benchmarks
	Conclusion
	Abstract
	What is the logic behind PVTM?
	How much delay in a single server?
	Threads vs Processes
	In-house vs Third Party apps
	How does it work?
	Benchmarks
	FX Trading platform
	IBM DataStage, ETL & MDM tool
	PostgreSQL PGbench
	Market Data connectivity suite

	Conclusion

