
PVTM User’s Guide Page | 1 Copyright © 2016
Pontus Networks

PVTM User's Guide (4.7.0.28)

Contents

Chapter 1. Introduction to PVTM.. 8

What is the logic behind PVTM? ... 8

How much delay in a single server? ... 9

Threads vs Processes ..10

In-house vs Third Party apps ...10

Chapter 2. Architecture ...11

Deployment Example ..12

Security ...12

Chapter 3. Requirements ...14

Chapter 4. Getting Started...15

Starting PVTM Simulator and GUI ...15

Updating the license..16

Running PVTM Agent ...16

Linux PVTM Agent instructions ..16

Linux PVTM Agent instructions with Azul Zing ...17

Linux PVTM Agent instructions with Open Onload ..17

Linux PVTM Agent instructions with Azul Zing and Open Onload ..17

Linux PVTM Agent instructions with TREP and Open Onload ..17

Linux PVTM Agent instructions with UMP Stores ..18

Linux PVTM Agent instructions with UMP Stores and Open Onload18

Windows PVTM Agent instructions: ..18

PVTM GUI Instructions: ...19

Elastic Search Notes..19

Chapter 5. PVTM Agent ...20

Data Collection ...20

Target Software Model...20

SET_APPS ..20

SET_APPLINKS ...22

Target Hardware Model..23

SET_COMPUTER..23

Score Analysis ..24

GET_SCORE ...25

Thread Pinning ...25

PVTM User’s Guide Page | 2 Copyright © 2016
Pontus Networks

STOP_SOLUTION request...25

STOP_SOLUTION reply ..25

RUN_SOLUTION_CACHED request ..25

RUN_SOLUTION_CACHED response ..27

Customizing When to Run a Solution Request with defaultNeedToRunSolutionCb().............28

Command and Control...29

COMMAND_REQUEST ..30

COMMAND_SET_PASSIVE ...30

COMMAND_SET_ACTIVE ...30

COMMAND_RESET ..31

COMMAND_GET_CONFIG ..31

COMMAND_GET_ACTIVE_STATUS ..31

COMMAND_SET_CONFIG:SIZE=<size>:<data> ..31

COMMAND_FORCE_RUN_SOLUTION_CACHED:SIZE=<size>:<data>.............................31

COMMAND_TRAIN_FUZZY_CACHE:SIZE=<size>:<data> ...31

COMMAND_TRAIN_FUZZY_CACHE_STOP ..34

COMMAND_QUERY_FUZZY_CACHE:SIZE=<size>:<data> ..34

COMMAND_QUERY_FUZZY_CACHE_STOP ...35

COMMAND_REPLY ...35

Command line utilities to send Control Messages ..36

PVTMAgentRemoteControl ...36

Terms and Concepts Definitions ...38

Command Line ...41

Environment Variables ..43

LD_PRELOAD...43

PVTM_AGENT_CONFIG_FILE_NAME ...43

PVTM_AGENT_FILENAME_FORMAT ..43

PVTM_AGENT_FORCE_MUX_BUSY_POLL ..44

PVTM_AGENT_FORCE_MUX_BUSY_POLL_FILTER ...44

PVTM_AGENT_FORCE_SO_BUSY_POLL...44

PVTM_AGENT_FORCE_SO_BUSY_POLL_FILTER ...45

PVTM_AGENT_SHMEM ..45

PVTM_DISABLE_HUGE_PAGES ..45

PVTM_DISABLE_NUMACTL_LOCAL ...45

PVTM_ENABLE_SELF_PINNING ..45

PVTM_PID_FILE_DIR ..46

pvtm.cfg Configuration File ..46

PVTM User’s Guide Page | 3 Copyright © 2016
Pontus Networks

BNF Grammar ...46

Configuration Values ..47

pvtm_agent_aggressive_run_solution_if_score_too_high ..47

pvtm_agent_app_config_override ...47

pvtm_agent_app_link_file_delta_threshold ..48

pvtm_agent_app_link_file_delta_threshold_bypass_pre_filter..48

pvtm_agent_app_link_inclusive_regex_filter ..48

pvtm_agent_app_link_inet6_socket_delta_threshold ..48

pvtm_agent_app_link_inet6_socket_delta_threshold_bypass_pre_filter 48

pvtm_agent_app_link_inet_socket_delta_threshold ..48

pvtm_agent_app_link_inet_socket_delta_threshold_bypass_pre_filter49

pvtm_agent_app_link_lock_delta_threshold...49

pvtm_agent_app_link_lock_delta_threshold_bypass_pre_filter ..49

pvtm_agent_app_link_override ..49

pvtm_agent_app_link_pair_delta_pcnt_threshold ...50

pvtm_agent_app_link_poll_with_thread_info ...50

pvtm_agent_app_link_unix_socket_delta_threshold ...50

pvtm_agent_app_link_unix_socket_delta_threshold_bypass_pre_filter51

pvtm_agent_app_link_use_preload ...51

pvtm_agent_app_link_use_preload_linux_inject...51

pvtm_agent_app_thread_perf_counter_events_csv ..51

pvtm_agent_assume_all_threads_talk ..52

pvtm_agent_chrt_rr_matching_processes..52

pvtm_agent_context_switch_cost ...52

pvtm_agent_cpu_info_json ..53

pvtm_agent_cpu_max_total_pcnt_auto_passive ..53

pvtm_agent_cpu_scaling_factor ...53

pvtm_agent_cpu_single_core_pcnt_auto_passive...54

pvtm_agent_cpu_state_linux ...54

pvtm_agent_cpu_state_linux_percentage_threshold ...54

pvtm_agent_delta_cpu_util_threshold ...55

pvtm_agent_delta_score_threshold_percentage ...55

pvtm_agent_delta_score_threshold_positive_trigger_only ...55

pvtm_agent_delta_time_to_delete_old_files_ms ..55

pvtm_agent_dynamic_config_file_name ..56

pvtm_agent_fake_zero_percentage_threads_last_core ...56

pvtm_agent_force_run_solution_request_if_new_threads_start 56

PVTM User’s Guide Page | 4 Copyright © 2016
Pontus Networks

pvtm_agent_ignore_inactive_irqs ...56

pvtm_agent_ignore_zero_percentage_threads ...56

pvtm_agent_inflate_cpu_util_threshold ...56

pvtm_agent_invalid_solution_counter_threshold ..57

pvtm_agent_irq_auto_filter_regex_pattern ..57

pvtm_agent_irq_auto_force_allowed_cores ...57

pvtm_agent_irq_auto_max_total_cpu_util ...57

pvtm_agent_irq_files...57

pvtm_agent_irq_route_table_symbols_to_cut ..59

pvtm_agent_junk_cores ..59

pvtm_agent_junk_cores_json_array ...59

pvtm_agent_junk_cores_allow_threads ...60

pvtm_agent_junk_cores_sanity_check ..60

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_mins_json_array60

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_maxs_json_array........................60

pvtm_agent_lock_stat_countdown_to_stop_monitoring ..61

pvtm_agent_log_enable_syslog ..61

pvtm_agent_log_level ...61

pvtm_agent_migrate_memory_when_pinning ..61

pvtm_agent_min_score_apply_pinning_threshold...61

pvtm_agent_move_non_match_pids_to_junk_cores ...62

pvtm_agent_norm_apps_send_current_cores ..62

pvtm_agent_num_times_no_sigificant_changes_force_send..62

pvtm_agent_passive_pinning_mode ...62

pvtm_agent_passive_pinning_mode_send_requests ...62

pvtm_agent_premium_junk_cores ..63

pvtm_agent_process_conn_stats ..63

pvtm_agent_process_lock_stats ...63

pvtm_agent_regex_pattern..63

pvtm_agent_regex_pattern_results_delimiter ..64

pvtm_agent_run_config_apply_pinning_per_thread ..64

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions 64

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions_cpu_threshold

...65

pvtm_agent_run_config_apply_pinning_whole_process...65

pvtm_agent_run_solution_cache_app_thread_pcnt_only ...65

pvtm_agent_run_solution_cache_enabled ...65

pvtm_agent_run_solution_cache_lru_table_size ...66

PVTM User’s Guide Page | 5 Copyright © 2016
Pontus Networks

pvtm_agent_run_solution_command ..66

pvtm_agent_run_solution_command_after_new_process_delay.......................................68

pvtm_agent_run_solution_new_process_delay_ms ...68

pvtm_agent_same_core_cost ...68

pvtm_agent_score_callback_lib_file ..68

pvtm_agent_score_callback_function_name ..68

pvtm_agent_score_moving_average_backoff_if_too_high ...69

pvtm_agent_score_moving_average_period ..69

pvtm_agent_score_num_ignore_after_pinning ...69

pvtm_agent_search_command_line ..69

pvtm_agent_search_env_vars ..69

pvtm_agent_send_thread_names ...70

pvtm_agent_set_chrt_rr_priority ..70

pvtm_agent_store_last_core_on_command_force_run_solution_cached70

pvtm_agent_timer_poll_cfg_file_interval_ms ...70

pvtm_agent_timer_poll_command_req_interval_ms ...70

pvtm_agent_timer_poll_proc_interval_ms ...71

pvtm_agent_timer_poll_thread_interval_ms ..71

pvtm_agent_unsolicited_run_threshold ...71

pvtm_agent_wait_before_sending_run_solution_ms ...71

pvtm_agent_wait_outstanding_pinning_request ...71

pvtm_agent_web_socket_interval_us..71

pvtm_agent_web_socket_max_payload_bytes ...72

Chapter 6. PVTM Simulator ..73

PVTM Score Calculation ...73

Context Switches ..73

Inter-thread Communication Cost ...75

Thread Execution Layout Simulation ...76

Initial Placement ...76

Score Improvement ..76

Historical Repository ...77

PVTM Elastic Search Schema...77

"RUN_SOLUTION_CHECK_CACHED" ..77

"RUN_SOLUTION_CHECK_CACHED_REQUEST"...77

"SET_COMPUTER" ...78

"SET_APPLINKS" ...78

"SET_APPS"..78

PVTM User’s Guide Page | 6 Copyright © 2016
Pontus Networks

"RUN_SOLUTION_STATUS" ..78

"EVENT"...79

"CONFIG" ...79

PVTM Elastic Search Queries ...79

Dumping the current schema: ..79

Find the Index and Node Shards ...80

Find all the simulation results between two Timestamps ..81

PVTM Elastic Search Configuration ..82

Command Line ...82

Chapter 7. PVTM GUI ..85

Login Screen ..85

Main Canvas...86

Top Toolbar...86

Navigation Buttons ..87

The Release notes Splash Screen ...87

The Time series Graph Window ..88

The Time series Toolbar ...88

The Time Series Canvas ...90

The Preview Area...93

The Data Analysis Preview Area...94

Summary Tab...95

Events Tab ...95

Threads Tab ...96

Select Thread Data to be Plotted...97

Thread Cores Button ...98

The Configuration Preview Area...99

The Options Grid Tab...99

The Raw Text Editor Tab .. 100

The Configuration Preview Toolbar .. 100

The Offline Simulator Window .. 101

Offline Simulator Window Parts ... 101

Thread Pinning Layout Toolbar ... 101

Hardware and Software Components Tree ... 102

Thread Pinning Layout Tabs ... 103

Hardware Tab .. 103

Thread Layout Tab ... 105

The Solution Tab .. 107

PVTM User’s Guide Page | 7 Copyright © 2016
Pontus Networks

The App Links Tab .. 108

The Remote Control Window .. 109

The Configure Menu ... 109

The Configuration Preview .. 110

The Design Components Window .. 111

The Hardware and Software Components Tree .. 111

Component JSON Editor ... 112

Preview Canvas ... 112

Changing the Password ... 113

Updating the License ... 113

Command Line ... 114

PVTM User’s Guide Page | 8 Copyright © 2016
Pontus Networks

Chapter 1. Introduction to PVTM

PVTM is an acronym for Pontus Vision Thread Manager. PVTM accelerates software by optimizing

the execution layout of threads for the server where they are currently running. PVTM improves

the performance of a variety of applications, ranging from latency in financial serv ices Foreign

Exchange pricing systems, to throughput of batch jobs and Database-centric workloads.

What is the logic behind PVTM?

Modern operating systems (OSs) on modern NUMA (non-uniform memory access) servers are not

very good at managing threads for performance-sensitive apps. OSs typically balance the load

across various cores rather than to focus on application performance. When dealing with

performance-sensitive applications, balancing the load across various cores causes application

latency to increase significantly.

As an example, in Figure 1 below, there are two Four-CPU servers running the same workload.

This hypothetical example shows a pipeline with seven steps. The OS on the left server distributes

the red threads across all CPUs in a round robin fashion; by doing this, the distances for data

movement are much greater. Therefore, the time to move data between the threads is several

times greater than in the server on the right. For many applications, constraining the threads to

fewer CPUs can significantly increase performance.

Figure 1 - Scheduler behaviour with and without PVTM

PVTM's powerful simulator finds the best thread pinning layout for a given application. PVTM's

patent pending technology allows users to find the optimal thread allocation within seconds. This

saves weeks or months of empirical test cycles to find optimized thread allocations. The

simulation capabilities also help users determine whether a workload is suitable for new hardware

models. Users can collect the software data from a given environment, and simulate what would

happen when using different types of server.

PVTM improves the probability that software threads will use less time to communicate with each

other. PVTM places threads that have high levels of communication as close to each other as

possible whilst at the same time avoiding context switches. To achieve this, PVTM captures the

following information about the system:

 Firstly, PVTM analyses the target hardware layout figuring out which cores are closest to

each other.

1.Data arrives in the network card

2 .Interrupt is triggered
3 .Data is copied to reading thread

4 .Data is copied to parsing thread
5 .Data is copied to sending thread

6 .Interrupt is triggered

7 .Data leaves the network card

PVTM User’s Guide Page | 9 Copyright © 2016
Pontus Networks

 Secondly, it analyses the communication patterns between threads including which threads

use sockets, shared memory and locks to talk to each other.

 Thirdly, PVTM captures the CPU utilization and current location of each thread, as well as

optionally the position of I/O devices, such as disks and network cards.

PVTM then sends all this information to a simulator that applies a performance score to the

system. The score penalizes threads that have strong communication links to each other, but that

are located in cores that have long relative distances to each other. The score also penalizes

context switches by avoiding moving active threads to the same core as other active threads as

much as possible. The simulator is then capable of running millions of what-if analysis to

determine a thread execution layout that improves the score as much as possible.

How much delay in a single server?

Most people think that the delays inside of a single server are negligible; however, the cumulative

effect of these delays is very large. The speed at which threads communicate with each other can

be over one hundred (100) times slower depending on which cores they are running in a single

server. The relative distance between the CPU cores and their memory access affects how quickly

data can move between threads.

The following DISTANCE RATIO TABLE shows rough relative speeds of sending data between

threads measured on a four CPU server. This table reflects the access speed of memory in

different cores, as well as the amount of time that it takes to re-fetch data from main memory if

not cached. Access speed is relatively fast when the CPU accesses data stored in level 1, level 2

and level 3 caches. The access speed is slower when the CPU accesses local memory, and even

slower when the CPU access remote memory from a neighbouring CPU.

DISTANCE RATIO TABLE

Level 1

Cache

Level 2 Cache Level 3 Cache Local Memory Remote

Memory

No-Cross

Bridge

Memory

1 2 6 10 83 113

It is important to notice that these speeds can vary dramatically depending on the thread

behaviour. As such, applications will seldom always run at the fastest speed or at the lowest

speed. As the Intel Haswell stats below show, the time to access memory can vary from 4 cycles

to access L1 to over 45 cycles plus around 57ns to access main memory. If a thread never

moved, and always accessed memory that was within the TLB and in L1 cache, it would use

around 4-5 cycles to access the data. In contrast, a thread constantly being moved across cores

(in the same CPU) would be missing L1/L2 cached data, having to go to L3 or main memory and

having its TLB trashed would use 36 + 9 + 57ns to access the data. In reality, threads will never

behave as perfectly as the 4-5 cycles 100% of the time; however, when threads are not pinned,

they tend to be constantly in the misbehaved state. By pinning threads in place, PVTM is trying to

increase the chances of the good 4-5 cycle behaviour.

Here are some stats for Intel's Haswell processor:

 L1 Data Cache Latency = 4 cycles for simple access via pointer

 L1 Data Cache Latency = 5 cycles for access with complex address calculation (size_t n,

*p; n = p[n]).

PVTM User’s Guide Page | 10 Copyright © 2016
Pontus Networks

 L2 Cache Latency = 12 cycles

 L3 Cache Latency = 36 cycles

 RAM Latency = 36 cycles + ~ 57 ns

 L1 Data TLB - miss penalty of 1-8 Cycles , with 4x1Gb/ 32x2Mb / 64x4Kb entries

 L2 Data TLB - miss penalty of 9 -22 cycles with 1024 2Mb / 1024 x 4Kb entries

Threads vs Processes

Note that up to this point, we have not mentioned processes, but rather threads. It is easy to

confuse the two terms, process and thread. As the name implies, PVTM works at a thread level,

and largely does not really care much about the process boundaries. PVTM can equally

optimize single-threaded processes, or multi-threaded processes, or any combinations

thereof.

In most modern operating systems, the main distinction between a few single -threaded processes

and a multi-threaded process is their rights to access memory. Threads within a single process

can access the same memory area directly, whereas threads that reside in different processes

have to make special calls to use shared memory. Many single-threaded applications use shared

memory to communicate; similarly, many multi-threaded applications use other inter-process

communication (IPC) mechanisms such as sockets or named pipes between their threads. The

reasons and merits of using single-threaded architectures vs multi-threaded architectures and

their IPC mechanisms vary dramatically, and it is beyond the scope of this document to discuss

them.

PVTM's model makes no distinction between two threads that belong to the same process and

decide to use futex locks to lock a shared memory area, and two threads that belong to different

processes, and use futex locks to lock a shared memory area. As long as there is a strong

communication pattern between the threads, we do not really care to which process they belong.

In-house vs Third Party apps

PVTM works with both in-house and third party apps, brand new apps and legacy apps equally.

PVTM is also agnostic to which computer language is used. PVTM captures low-level system calls

to determine which threads communicate with each other. It behaves like a high-performance

profiler that captures basic system calls with little overhead to the system. Because these calls

are at quite a low-level, PVTM can easily figure out inter-thread patterns between threads in

languages as diverse as C, C++, Java, R, Perl, C#, Python, and any other higher level language,

as long as the applications are dynamically-linked against the system calls.

PVTM User’s Guide Page | 11 Copyright © 2016
Pontus Networks

Chapter 2. Architecture

As seen in Figure 2 below, PONTUS VISION Thread Manager (PVTM) has 3 main components:

1) PVTM Agent – (pvtm-agent) – A lightweight single threaded agent that collects information

about the hardware, and discovers the data communication patterns between threads. PVTM

Agent is written in C, and usually uses < 1% CPU to capture its data. To aid PVTM Agent

discover the thread pinning strategies, the following components may also be used:

a) libpvtm-agent-preload.so – On Linux, a library that can help the PVTM Agent discover

communication patterns between threads. This can be injected in existing applications

without recompiling them by using the LD_PRELOAD environment variable.

b) pvtm-agent.jar – an optional java agent file that exposes the names of Java threads to the

operating system. To use this, you need to change your JVM command line to add the -

javaagent:<path to the pvtm-agent.jar file>.

c) pvtm-agent-preload-windows.dll – On Windows, a library that PVTM Agent discovers

communication patterns between threads. PVTM Agent automatically connects to the

applications that need to be monitored using this DLL along with remote debugging

techniques

2) PVTM Simulator / Thread Manager – (run-threadmgr.sh) – a Java 7 standalone simulation

engine that receives TCP/IP connections from PVTM Agent, and can take the hardware

information, as well as the data communication patterns between the threads to produce an

optimal layout of software threads on the hardware cores.

3) PVTM GUI Server (run-gui.sh) – a self-contained server that hosts a browser-based graphical

user interface. The GUI enables users to visualize the layout of the threads, and produce

scripts for static thread pinning configurations. This can be used in environments where PVTM

Agent is not allowed to run.

Figure 2 - PVTM Component Architecture

(1) Target Hardware
(2) Software

Agent(s)

(4) Apply Thread Pinning

(3) Score / Run Simulation

Simulator(s)

GUI(s)

(5) Query / Off-line sims

PVTM User’s Guide Page | 12 Copyright © 2016
Pontus Networks

Deployment Example

Figure 3 below shows a small deployment of thread manager. The ratio of PVTM Agents to PVTM

Simulators increases over time. Each simulation takes around 10 to 30 seconds to execute, but

the PVTM Simulator is an Elastic Search node that stores previous simulation results. As the

number of previous simulation results increases, the PVTM Simulator spends less and less time

running calculations and the amount of CPU required decreases drastically.

Figure 3 - Deployment Example

We have seen installations where users have a 100 to 1 ratio of agents to simulators, and after the

learning curve, up to 1000 to 1 ratio; however, that figure is highly dependent on the complexity

of the system, how much the workloads vary, and how often the PVTM Agent is configured to poll

information. The PVTM Simulators can scale horizontally, as long as there is TCP/IP connectivity

between Simulator instances, they will start forming an Elastic Search cluster and data will be

sharded across the nodes as they scale.

Security

PVTM comes with a default key store that contains self-signed certificates. These will generate

warnings in browsers stating that the web site is unsafe. It is recommended that the user

provides his or her own store with certificates signed by a Certificate of Authority recognized by

the corporate browsers. The creation of a certificate store is beyond the scope of this document;

however, the user may need to modify some of the following settings in the run-gui.[bat/sh] file

used to start the PVTM GUI server.

Tip: All the –D command line configurations may also be put inside of a properties file, and passed

in as the first line argument to the PontusVision server; this is far safer than passing them on the

command line, especially if the keystore and truststore passwords are kept in clear text. Passing

these on the command line easily allows anybody in the machine to run commands like ps, and get

the list of arguments.

Here's a sample format for the property file:

pontusvision.truststore=/opt/pontusvision/.keystore_pontusvision

http://www.pontusvision.com/wp-content/uploads/2013/09/pvtm-system-layout3.png

PVTM User’s Guide Page | 13 Copyright © 2016
Pontus Networks

pontusvision.web_data_keystore_alias=localhost

pontusvision.keystore=/opt/pontusvision/.keystore_pontusvision

PVTM User’s Guide Page | 14 Copyright © 2016
Pontus Networks

Chapter 3. Requirements

PVTM has specific requirements for each of its components. The PVTM Simulator and GUI can be

deployed on any Operating Systems that support Java 7 or later. The PVTM Agent is written in C,

and is currently supported on Linux, Windows, as well as an exper imental version for AIX 7.1.

Here are the technical requirements for each component:

 PVTM Simulator & PVTM GUI Server – Java 7 or later

 PVTM Agent (Linux) – glibc 2.4 or later – root access is desirable, but not strictly needed

 PVTM Agent (Windows) – Windows 2003 and newer – with admin rights, and if using virus

checkers, ensure that PVTM Agent is added to the exception list

 PVTM GUI – Firefox or Chrome web browsers

 PVTM Agent hardware – bare metal, or non-overcommitted VM (1:1 ratio of dedicated

physical to virtual cores) with 8 + cores

 PVTM Simulator and GUI hardware – 4 cores, 4 GB of memory, 10 GB of storage.

 Network connectivity: tcp connections to be established using the same arrow directions as

shown in Figure 3.

End users perform their operations on workstations using a Web browser. The following browsers

are supported:

 Recommended Google Chrome (desktop version 24 or higher)

 Mozilla Firefox (desktop version 17.0 or higher)

 Microsoft IE11 or above

 Microsoft IE7 or IE8 – only supported with the following plug-in:

https://developers.google.com/chrome/chrome-frame/

Note: if your firewall is blocking it, you can also get it from here; once you download the file,

rename it as a .zip file, and use the password 'pontus' to extract the chrome-frame offline installer

PVTM User’s Guide Page | 15 Copyright © 2016
Pontus Networks

Chapter 4. Getting Started

To get started quickly, these are the install instructions for Pontus Vision Thread Manager. As

seen in the Architecture Chapter, the product is broken into 3 main components:

1) PVTM Simulator - A thread manager simulator, which should run on a separate server than

the one trying to be optimized

2) PVTM GUI – a server that hosts a web-based interface, which may sit either in the same

server, or separately to the thread manager simulator

3) PVTM Agent – an agent collects performance information about applications, and sends

them to the thread manager simulator. The agent will usually run on its own, inside the

server that needs to be optimized.

The key requirements are java 7 for the thread manager and GUI servers , and Firefox / Chrome

for the user interface. The agent can run on Linux (with glibc 2.4 or above), or Windows. It is

recommended that where possible, the agent runs as root on Linux (though that is not required for

capturing information), and runs as administrator on Windows.

Here is a Link to the latest version:

http://www.pontusvision.com/wp-content/uploads/2014/01/pontusvision-4.7.0-installer.jar

If you do not have a valid licence key, please contact us at sales@pontusnetworks.com, and we

will send a new license file, and corresponding key with the following format:

O=<company>,OU=<environment or dept>,CN=<timeframe or person>

Starting PVTM Simulator and GUI

Here are the instructions to run the PVTM Simulator and PVTM GUI:

1) choose a server (the PVTMServer) that has connectivity to the server that you want to optimize

to run the thread manager server, download the jar file above, an run the following command:

java -jar pontusvision-4.7.0-installer.jar -console

2) use all the default options for now, and when prompted for a license key, please enter the

following string:

O=<company>,OU=<environment or dept>,CN=<timeframe or person>

3) once the install finishes, replace the license.lic file in the installation area (by default ~/pontus -

vision/4.7.0/license.lic) with the one attached in the e-mail from your pre-sales engineer.

4a) Linux instructions – to start the main components, run the following commands:

cd ~/pontus-vision/4.7.0/

./run-threadmgr.sh

./run-gui.sh

4b) Windows instructions – to start the main components, perform the following actions:

In the Start Menu, type Pontus, and start the following processes

mailto:sales@pontusnetworks.com

PVTM User’s Guide Page | 16 Copyright © 2016
Pontus Networks

Start PontusVision Thread Manager

Start PontusVision Server

Updating the license

The license file can be updated from the PVTM GUI (see Updating the License), or directly by

overriding the current license.lic file in the file system. Note that during evaluations, the license

key information (e.g. O=<company>,OU=<environment or dept>,CN=<timeframe or person>)

may occasionally change. If it does, then this information must be updated in the run-gui.(sh|bat)

and run-threadmgr.(sh|bat) files by changing the following line:
-Dpontusvision.license.holder="O=xxxxx, OU=yyyy, CN=zzzz"

Running PVTM Agent

Once PVTM Simulator and PVTM GUI are running, Here 's what you need to run in the target

machines where you want the agent to profile the apps:

Linux PVTM Agent instructions

1) cd to the <install directory>/4.7.0/linux, and edit the pvtm.cfg file, changing the

pvtm_agent_regex_pattern option with a regular expression that matches a list of applications you

want to monitor (e.g. set it to pvtm_agent_regex_pattern="java" to match all the java instances

in the server. Note that you can specify a list of processes by delimiting them with a | (e.g.

pvtm_agent_regex_pattern="java|apache" will pick up both java and apache instances.

2) tar / zip up the following files from the PVTMServer installation directory:

 cd ~/pontus-vision/4.7.0/

 tar cvf pvtm-agent.tar linux

3) copy the pvtm-agent.tar file to the machines that need to be monitored, and untar them:

 mkdir -p /opt/pontus-vision/4.7.0

 cd /opt/pontus-vision/4.7.0

 tar xvf pvtm-agent.tar

4) run the following:
./pvtm-agent --url=<PVTMServer Address>

e.g.:

 ./pvtm-agent --url=192.168.51.2

5) In order to introspect applications a bit further (e.g. to find whether threads are sharing the

same shared memory areas, or futex locks), we also have a shim layer that can unobtrusively

intercept system calls you are making. To enable this in your apps, you can set the LD_PRELOAD

environment variable, setting it to the libpvtm-agent-preload.so file.

e.g.:

export LD_PRELOAD=/opt/pontus-vision/4.7.0/linux/'$LIB'/libpvtm-agent-preload.so

<run your app normally>

NOTE: The '$LIB' is a placeholder replaced by the ld.so loader to either lib or lib64 depending on

whether the app is 32 or 64 bits; also, if you need to put the LD_PRELOAD value in double quotes,

then the syntax is as follows:

export LD_PRELOAD="/opt/pontus-vision/4.7.0/linux/\$LIB/libpvtm-agent-preload.so"

PVTM User’s Guide Page | 17 Copyright © 2016
Pontus Networks

6) To help add custom relationships between threads in Java, we also ship a java agent that

exposes the Java thread names to the operating system. To enable this feature, add the following

line to your Oracle Hotspot JVM 7 or above:

-javaagent: /opt/pontus-vision/4.7.0/linux/pvtm-agent.jar

Linux PVTM Agent instructions with Azul Zing

Azul Zing is a high-performance Java Virtual Machine that never pauses for garbage collection. We

have created a special version of the LD_PRELOAD library that works with Azul 's Zing JVM's

memory management implementation. If using Zing, you must use this library instead of the

standard one, as otherwise, the application will likely deadlock. The zing library is currently only

shipped in 64-bit mode. To use it, simply set the LD_PRELOAD environment variable as follows:

export LD_PRELOAD =/opt/pontus-vision/4.7.0/linux/libpvtm-agent-preload-

zing.so

Linux PVTM Agent instructions with Open Onload

Open Onload helps users accelerate network traffic sent through Solarflare 's network cards by

bypassing the kernel. To use Open Onload with the normal PVTM PRELOAD, do the following:

unset LD_PRELOAD

export ONLOAD_PRELOAD="/opt/pontus-vision/4.7.0/linux/libpvtm-agent-

preload.so /lib64/libonload.so"

Lastly, prefix your application with onload –profile=<latency|safe|custom> followed by the normal

command line.

Note that the PVTM library must always come before the libonload.so file in the ONLOAD_PRELOAD

environment variable, and that the two files are separated by a space.

Linux PVTM Agent instructions with Azul Zing and Open Onload

The instructions to run Azul Zing with Open Onload are quite similar to the Linux PVTM Agent

instructions with Open Onload, with the key difference being the name of the Library in the

ONLOAD_PRELOAD environment variable:

unset LD_PRELOAD

export ONLOAD_PRELOAD="/opt/pontus-vision/4.7.0/linux/libpvtm-agent-preload-

zing.so /lib64/libonload.so"

Lastly, prefix your application with onload –profile=<latency|safe|custom> followed by the

normal command line.

Note that the PVTM library must always come before the libonload.so file in the ONLOAD_PRELOAD

environment variable, and that the two files are separated by a space.

Linux PVTM Agent instructions with TREP and Open Onload

TREP is a leading market data distribution system from Thomson Reuters. Starting with version

4.7.0.7, we have released an experimental feature that allows Thomson Reuters 's TREP to run with

PVTM User’s Guide Page | 18 Copyright © 2016
Pontus Networks

onload. Traditionally, TREP applications do not work with Open Onload; however, we have created

a patch that enables Open Onload to be used with TREP applications by doing the following:

unset LD_PRELOAD

export ONLOAD_PRELOAD="/opt/pontus-vision/4.7.0/linux/libpvtm-agent-

preload.so /lib64/libonload.so"

export PVTM_AGENT_ONLOAD_REUTERS_OVERRIDE=1

Lastly, prefix your application with onload –profile=<latency|safe|custom> followed by the

normal command line (e.g. onload --profile=latency numactl -N 1 --preferred=1 ./ads –nodaemon)

Note that the PVTM library must always come before the libonload.so file in the ONLOAD_PRELOAD

environment variable, and that the two files are separated by a space.

Linux PVTM Agent instructions with UMP Stores

UMP Stores are a part of Informatica's Ultra Messaging (AKA 29west) low latency middleware

suite. Here are the instructions to run UMP Stores with PVTM Agent:

export LD_PRELOAD=/opt/pontus-vision/4.7.0/linux/'$LIB'/libpvtm-agent-

preload.so

export PVTM_DISABLE_HUGE_PAGES=1

./umpstored <command line args>

Linux PVTM Agent instructions with UMP Stores and Open Onload

UMP Stores are a part of Informatica's Ultra Messaging (AKA 29west) low latency middleware

suite. Here are the instructions to run Ump Stores with Solarflare's Open Onload:

unset LD_PRELOAD

export ONLOAD_PRELOAD="/opt/pontus-vision/4.7.0/linux/libpvtm-agent-

preload.so /lib64/libonload.so"

export PVTM_DISABLE_HUGE_PAGES=1

onload –profile=latency ./umpstored <command line args>

Note that the PVTM library must always come before the libonload.so file in the ONLOAD_PRELOAD

environment variable, and that the two files are separated by a space.

Windows PVTM Agent instructions:

1) Create a batch file (e.g. run-pvtm-agent.bat) inside the windows folder in the PVTMServer

installation directory with the following:

cd C:\Pontus\pontus-vision\4.7.0\windows

sudo pvtm-agent-win.exe -u <PVTMServer Address>

2) zip up all the files in the windows folder inside the PVTMServer installation directory

3) copy the zip file from (2) to the machines that need to be monitored, and unzip the file in the

C:\Pontus\pontus-vision\4.7.0\windows directory

4) run the agent (note that you'll need an account with admin rights):

run-pvtm-agent.bat

PVTM User’s Guide Page | 19 Copyright © 2016
Pontus Networks

PVTM GUI Instructions:

Users should then be able to point a browser to https://<PVTMServer Address>:8443 and login as

root/pa55word.

Once in, click on the Self Tuning button, and choose your server from the drop down list. Once

you find a timeline in the graph that you're interested in, just click on that point in the map, and it

should bring up the code you need.

Elastic Search Notes

PVTM uses elastic search to store some of our configuration; here are the instructions if you need

to change the default port 9200 to a different one (e.g. 9036), or to run the GUI web server (run-

gui.sh) on campus, pointing to the thread manager (run-threadmgr.sh) in co-lo:

a) Create a file called pvtm.yml in the thread manager simulator server 's (in colo) install dir, with

the following line:

transport.tcp.port: 9036

b) Add the following option to the run-threadmgr.sh file in the thread manager simulator server 's

(in colo):

 -Dpv.elasticsearch.node.config.url=file://<path to the pvtm.yml file from (a)>

c) Add the following options to the run-gui.sh file in the GUI Server (campus):

 -Dpv.elasticsearch.transportclient.host=<IPaddress of enyrs040011)> \

 -Dpv.elasticsearch.transportclient.port=9036

PVTM User’s Guide Page | 20 Copyright © 2016
Pontus Networks

Chapter 5. PVTM Agent

PVTM Agent runs in each server that needs to be optimized. It performs four main tasks:

1) Data Collection – PVTM Agent collects information about the hardware, and builds a cost

matrix showing the relative distances between each of the cores in the server; PVTM Agent

is also configured to capture information about selective processes in the server that

match a regular expression filter. Lastly, PVTM Agent also collects information about

network and disk device interrupts, including in which cores the interrupts are running.

2) Score Analysis – PVTM Agent keeps a moving average of previous scores, and decides

whether to request a solution to be solved by the simulator. The default criterion is to

check whether the latest score is within 5% of the moving average; if it is greater, a

simulation request is sent to the simulator.

3) Thread Pinning – PVTM Agent is also responsible for applying the thread execution layout

from a simulation. It moves the threads from their current position to the selected

position.

4) Command and Control – PVTM Agent can be remotely controlled for actions such as

making it passive, active, getting the current status, and even setting the configuration file

contents.

PVTM Agent uses ascii text messages sent over web sockets to communicate with the Simulator.

Where the content of the messages requires more complex structure, a java script object notation

(JSON)-like structure is used. The following sections go over the format of the messages sent

between PVTM Agent and the simulator, as well as some of the key concepts behind them.

Data Collection

PVTM Agent collects data related to the Target Software Model, and the Target Hardware Model to

provide PVTM Simulator with enough information to calculate scores and run simulations. The

following sections show the type of data collected and the message formats used to send it to

PVTM Simulator.

Target Software Model

The Target Software Model uses two key JSON-style message types:

SET_APPS

The SET_APPS message has information about all the applications and their threads, including the

CPU utilization of each thread, as well as the PIDS, TIDS, and optional information about threads.

The SET_APPS message has an array of JSON-style objects with the following fields:

1) type – the type of application (either 'pontusdraw2d.application' to indicate a normal

application, or 'pontusdraw2d.nicdriver' to indicate a network interrupt request handler)

2) a list of properties, including the following values:

a. id – the process name as matched by the PVTM Agent's regex, followed by a

process ID

PVTM User’s Guide Page | 21 Copyright © 2016
Pontus Networks

b. threads – a string with a JSON array inside representing each of the threads'

percentage CPU utilizations

c. pvtmThreadIds – an optional string with a JSON array inside representing the

original thread IDs

d. pvtmCurrentCores – an optional string with a JSON array inside representing the

current cores where each of the threads was running

e. assumeAllThreadsTalk – a Boolean flag that indicates whether the model should

artificially create a link between all the threads within the process. Note that this

is not typically advised unless PVTM Agent is unable to capture the inter-thread

communication patterns.

f. allowedCores – an optional string with a JSON array inside representing the list of

cores where all the threads in the application are allowed to run. The simulator

model will treat this as a hard constraint, and will not produce a valid score until

the threads are running on the correct cores. Note that some threads that are idle

do not obey the thread pinning strategy until they run again, and as such, may

erroneously appear in the wrong core in tools like 'top' on Linux. PVTM Agent is

able to report these threads in the new core allocation; when the threads run

again, they should be scheduled in the new cores.

g. pvtmPerfCounterEventsCsv - an optional comma-separated string that determines

which performance counter events PVTM Agent will send in the

pvtmPerfCounterVals option (see

pvtm_agent_app_thread_perf_counter_events_csv for more details).

h. pvtmPerfCounterVals - an optional two-dimensional array that has an array of

performance counter values (matching the number of events sent in the

pvtmPerfCounterEventsCsv optional string) for each thread. See

pvtm_agent_app_thread_perf_counter_events_csv for more details.

i. threadAllowedCores - an optional two-dimensional array that has an array of

allowed cores for each thread in the application. An array with a single value of -1

means the thread can run anywhere. Arrays with one or more numbers greater

than or equal to zero will constrain the PVTM Simulator from moving those threads

to just the cores listed. If this is not present, the threads can be placed anywhere.

Note that the allowedCores option should always be a super-set of the values listed

here. If not, the allowedCores for the whole process will trump this option.

Here is a sample message:

[

{

 'type':'pontusdraw2d.application',

 'properties':

 {

 'id':'test-6440',

 'threads':'[0,0,16,0]',

 'pvtmThreadIds':'[86500,86380,86492,86504]',

 'pvtmCurrentCores':'[1,1,3,3]',

 'assumeAllThreadsTalk':'false',

 'pvtmPerfCounterEventsCsv':'L1-dcache-load-misses,L1-dcache-store-

misses,LLC-load-misses,LLC-store-misses,dTLB-load-misses,dTLB-store-misses',

 'pvtmPerfCounterVals': '[[0,0,0,0,0,0], [10,10,2,3,4,6],

 [34,333,32,11,11,33], [23,55,55,21,35,65]]'

 'threadAllowedCores':'[[-1],[-1],[2,3],[2,3]]'

 }

PVTM User’s Guide Page | 22 Copyright © 2016
Pontus Networks

},

{

 'type': 'pontusdraw2d.nicdriver',

 'properties':

 {

 'id':'IRQ--110',

 'threads': '[50]',

 'allowedCores': '[0,1]'

 'pvtmThreadIds':'[-110000000]',

 'pvtmCurrentCores':'[1]'

 }

}]

SET_APPLINKS

The SET_APPLINKS message has information about all the inter-thread communication patterns,

including the type of connection, as well as the volumes of data. PVTM Agent typically captures

this information after a shim layer of code (either using LD_PRELOAD on Linux, or a remote

debugger on Windows) intercepts the application's calling patterns. This information can also be

injected by adding a set of rules in the pvtm.cfg Configuration File.

The SET_APPLINKS message has an array of JSON-like objects with the following fields:

1) sourceId – the id (as defined in the SET_APPS message) of the process starting the

connection.

2) targetId – the id (as defined in the SET_APPS message) of the process ending the

connection.

3) sTid – the source thread ID (as defined in the SET_APPS message) of the thread starting

the connection.

4) tTid – the target thread ID (as defined in the SET_APPS message) of the thread ending the

connection.

5) Type – a string with the following general format:

<Type>_<Conn details>_(<Connection gross weight>), where:

Type is "local_domain_socket", "lock", "inet_socket", "inet6_socket", "pipe_or_file" or "shmm"

Conn Details are the connection details (e.g. for inet_socket, the source and destination ports,

source and destination IP addresses, for pipe or file the name of the pipe or file name, for loc k the

memory address of the lock in use, and for shmm the shared memory address.

Connection gross weight is the non-normalized number of bytes sent & received by the threads for

the local_domain_socket, inet_socket, inet6_socket, pipe_or_file types, and the number of times a

lock was unlocked for the lock type, and the number of times a shared memory area was created

for shmm.

Here's a sample message:

 [

 {

 'sourceId':'test-6440',

 'targetId':'IRQ--110',

 'sTid':'86500',

 'tTid':'-110000000',

 'type':'inet6_socket_lport=57278,rport=61616_(5555556)'

 },

PVTM User’s Guide Page | 23 Copyright © 2016
Pontus Networks

 {

 'sourceId': 'test-6440',

 'targetId': 'test-6440',

 'sTid':'86500',

 'tTid':'86380',

 'type':'lock_ptr=9F6FC0_(80)'

 },

 {

 'sourceId': 'test-6440',

 'targetId': 'test-6440',

 'sTid':'86492',

 'tTid':'86504',

 'type':'pipe_or_file_EventFD1243_(1234566)'

 }

]

Target Hardware Model

The Target Hardware Model is uses a single a JSON-like object that describes the server where

PVTM Agent is running, as well as a few parameters used by the simulator to apply the system

score.

SET_COMPUTER

The SET_COMPUTER message is a JSON-style object that has the following fields:

1) Type – currently hardwired to pontusdraw2d.IBM_3750_m4

2) Properties – a JSON-style object with the following fields:

a. Id – an identifier for the server

b. ContextSwitchCost – the multiplier that the simulator will use to penalize the score

for context switches. The formula used by the simulator is the following:

ContextSwitchCost =
ln(𝑛𝑢𝑚𝑇ℎ𝑟𝑒𝑎𝑑𝑠) ∗ 𝐶𝑃𝑈𝑈𝑡𝑖𝑙 ∗ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑆𝑤𝑖𝑡𝑐ℎ𝐶𝑜𝑠𝑡

𝐶𝑝𝑢𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

Where:

numThreads is the number of threads currently scheduled in the core,

CPUUtil is the total CPU percentage of the threads currently scheduled in the core, or 0.1 if

the total utilization is zero)

ContextSwitchCost is the value set in the SET_COMPUTER message

CPUScalingFactor is either 1, or the value set in the RUN_SOLUTION_CACHED request

message

c. junkCores is a string with a JSON array representing a list of cores that the

simulator is not allowed to use in its model; any threads running in a junk core

yield an invalid score.

d. physicalCpuList is a string with a JSON array representing the physical CPU socket

numbers of each of the cores in the server

e. latencyMatrix is a sparse matrix of integers that has the relative costs of sending

data from one core to another core. These values are unit-less, and only represent

a normalized cost of sending data from one core to another.

f. UN_I4_I6_LD_PF_LK_SM_MINS/MAXs - These two options allow users to bias

the weights of inter-thread connections. They contain the min and max values for

the normalized weights of the following protocols:

PVTM User’s Guide Page | 24 Copyright © 2016
Pontus Networks

 un - unknown protocol

 i4 - ipv4 sockets

 i6 - ipv6 sockets

 ld - local domain sockets

 pf - pipes and files

 lk - locks

 sm - shared memory

These arrays will spread the actual values for the protocols (the value in

parenthesis of how many unlocks for locks or bytes were sent on sockets between

these artificial min and max values. The default values below will make all the

unknown protocols with a weight of 1, all the ipv4,v6, and local domain sockets

spread between 20 and 30, all the pipes and files between 1 and 5, all the locks at

1, and all the shared memory areas at 10. These will effectively bias the model

towards favouring socket traffic over locks, pipes and files, and shared memory.

Here is a sample message describing a 4-core server with a single CPU socket:

{

"type": "pontusdraw2d.IBM_3750_m4",

"properties":

 {

 "id": "id",

 "contextSwitchCost": "100",

 "junkCores": "[]",

 "physicalCpuList" : "[0,0,0,0]",

 "latencyMatrix": "[[100,1,8,8],

 [1,100,8,8],

 [8,8,100,1],

 [8,8,1,100]]",

 "UN_I4_I6_LD_PF_LK_SM_MINS": "[1,20,20,20,1,1,10]",

 "UN_I4_I6_LD_PF_LK_SM_MAXS": "[1,30,30,30,5,1,10]"

 }

}

Score Analysis

In addition to the data collection messages in the previous section, PVTM Agent also sends score

requests to the simulator. The score requests are one of the most important activities of PVTM

Agent. The scores calculated by the simulator influence when PVTM Agent decides to request, and

to apply thread pinning strategies.

The score requests are sent whenever the CPU utilization of any of the threads changes by a

configurable percentage threshold, whenever a new thread starts, or PVTM Agent can also be

configured to force a score request to be sent periodically regardless of any changes in the

environment.

PVTM User’s Guide Page | 25 Copyright © 2016
Pontus Networks

GET_SCORE

The GET_SCORE message only has the same payload as the value set in the PVTM Agent's

pvtm_agent_run_solution_command option. When the simulator receives this message, it takes

the latest state of the system, as defined by the last SET_COMPUTER, SET_APP and SET_APPLINK

messages received, and uses that to calculate a score.

The return value is either an ASCII text number representing the score, or an error message,

such as "INVALID SOLUTION": followed by a score, or "ERROR". An INVALID SOLUTION message

appears whenever the current state of the system has threads running in a core that exceed 100%

CPU utilization, or a thread running in a core that is not in its 'allowed cores' list. If PVTM Agent

receives an invalid score, it will immediately try to send a request to run a simulation, which is

covered in the Thread Pinning section. If PVTM Agent receives a valid score, it calls the

defaultNeedToRunSolutionCb(), also described in the Thread Pinning section to determine whether

a new thread pinning strategy is required.

Thread Pinning

In addition to data collection and thread pinning, thread pinning is the third type of activity that

enables PVTM Agent to stop simulations, to run new simulations, and to get simulation results to

be applied automatically in the system. The thread pinning activities use four message types:

STOP_SOLUTION request

Whenever a simulation request needs to be sent to the simulator, a STOP_SOLUTION request

message is sent first. This ensures that any currently running simulations are stopped before

requesting a new one. The body of the STOP_SOLUTION request is currently unused.

STOP_SOLUTION reply

The reply message from a stop request is always either the string "ERROR" or "OK". It is very rare

for an ERROR response to be received. If it does arrive, please look at the simulator server logs,

and report any exceptions to the PVTM support team.

RUN_SOLUTION_CACHED request

Once a successful STOP_SOLUTION request arrives back at PVTM Agent, a

RUN_SOLUTION_CACHED request message is sent. The RUN_SOLUTION_CACHED request

message has a normalized request, which strips the process names and process IDs so the results

can be more easily cached and re-used across instances. The normalized request (normReq)

object is fully self-contained, and has three main components:

1) computerJson, which is similar to the SET_COMPUTER message,

2) normAppsJson, which is similar to the SET_APPS message, except that the process names

and thread IDs are replaced with increasing integers starting at 0, and the

pvtmCurrentCores field is not present

PVTM User’s Guide Page | 26 Copyright © 2016
Pontus Networks

3) normAppLinksJson, which is similar to the SET_APPLINKS message, except that the

sourceID, targetID, sTid and tTid are replaced with increasing integers starting at 0,

matching the values from the normAppsJson.

In addition to the normReq, the RUN_SOLUTION_CACHED request message also has the following

fields:

1) normReqHash – a 64-byte hash that is used for finding previously saved simulations

2) threadLastCores:[1,1,3,3,1] – an array of cores for each of the threads in the model

3) 'threadIds':[86500,86380,86492,86504,] – an array of the actual thread IDs

4) 'reason' – a string describing why the thread pinning strategy was sent

5) 'runSolutionCommand': a string that controls simulator parameters such as how long to

run the simulation for, whether or not to randomize the core assignments, and to clear the

last core assignments before running a simulation (see the section on

pvtm_agent_run_solution_command for more details about the format of this parameter).

Here is an example RUN_SOLUTION_CACHED request message:

{

 normReq:

 {

 computerJson:

 {

 "type": "pontusdraw2d.IBM_3750_m4",

 "properties":

 {

 "id": "id",

 "contextSwitchCost": "100",

 "junkCores": "[]",

 "physicalCpuList" : "[0,0,0,0]",

 "latencyMatrix": "[[100,1,8,8],

 [1,100,8,8],

 [8,8,100,1],

 [8,8,1,100]]",

 }

 }

 ,normAppsJson:[

 {

 'type':'pontusdraw2d.application',

 'properties':

 {

 'id':'0',

 'threads':'[0,0,16,0]',

 'pvtmThreadIds':'[0,1,2,3]',

 'assumeAllThreadsTalk':'false'

 }

 },

 {

 'type': 'pontusdraw2d.nicdriver',

 'properties':

 {

 'id':'1',

 'threads': '[50]',

 'allowedCores': '[0,1]'

 'pvtmThreadIds':'[4]',

PVTM User’s Guide Page | 27 Copyright © 2016
Pontus Networks

 }

 }],

 ,normAppLinksJson:[

 {

 'sourceId':'0',

 'targetId':'1',

 'sTid':'1',

 'tTid':'4',

 'type':'inet6_socket_0_(20)'

 },

 {

 'sourceId': '0',

 'targetId': '0',

 'sTid':'0',

 'tTid':'1',

 'type':'lock_ptr_0_(1)'

 },

 {

 'sourceId':'0',

 'targetId':'0',

 'sTid':'2',

 'tTid':'3',

 'type':'pipe_or_file_EventFD1243_(1)'

 }

]

 }

'normReqHash':"0eb068387b46dc5e3a88bb152e538fe2065407eb942332282ad5d801cca20

bb9",

 'threadLastCores':[1,1,3,3,1],

 'threadIds':[86500,86380,86492,86504, -110000000],

 'reason':"39.34 Percentage difference was higher than the threshold of

10 New score = 13450; last simple moving avg (sma) = 8978.60; new sma =

8978.60",

 'runSolutionCommand':

 "{ 'maximumSecondsSpend':'30','randomize':'false', 'clearLast':'true',

"cpuScalingFactor": "1"

}"

}

RUN_SOLUTION_CACHED response

Once the simulator completes a RUN_SOLUTION_CACHED simulation request, a

RUN_SOLUTION_CACHED response message is returned back to PVTM Agent. This message has

enough information for PVTM Agent to pin threads to specific cores, and on Linux, the IRQs to

specific CPU masks.

PVTM User’s Guide Page | 28 Copyright © 2016
Pontus Networks

The RUN_SOLUTION_CACHED response message has an array of JSON-like objects for each of the

processes the following fields:

 Pid – the process ID of the process

 threadIds – a JSON array of thread IDs

 coreIds – a JSON Array of core IDs representing the location of each of the threadIds by

order (e.g. in the example message, thread ID 9672 would be pinned to core 0, thread ID

9684 to core 4, and thread ID 9689 to core 4.

 numaZoneIds – a 2-Dimensional JSON Array with the NUMA (Non-uniform memory access)

zones where each of the threads is allowed to run. PVTM Agent currently ignores this

feature.

 Score – the pre-calculated score for the current thread execution pattern.

[{"pid":9672,"threadIds":[9672,9684,9689],"coreIds":[0,4,4],"numaZoneIds":[[

0],[0],[0]],"score":"2217"}]

Customizing When to Run a Solution Request with defaultNeedToRunSolutionCb()

This function determines both whether a RUN_SOLUTION_CACHED request message should be

sent to the simulator, and whether a RUN_SOLUTION_CACHED response should be applied. Users

can easily override this function with any custom logic to determine when to execute a thread

pinning strategy. See the pvtm_agent_score_callback_lib_file section for more details on how to

load this into PVTM Agent.

The defaultNeedToRunSolutionCb() function returns 1 if a new thread pinning strategy should be

requested, or applied, or 0 otherwise

 The default implementation uses a moving average of previous scores to determine whether a

new thread pinning execution layout is required. Here is the function prototype:

static int defaultNeedToRunSolutionCb

(

 long cfgMinScoreApplyPinningThreshold,

 int cfgDeltaScoreThresholdPercentage,

 int cfgScoreSimpleMovingAveragePeriod,

 int cfgUnsolicitedRunThreshold,

 char onlyTriggerOnPositiveDelta,

 const char* newScoreStr,

 const char* runSolutionScore,

 long * unsolicitedRunCounterPtr,

 char* normAppsSendCurrentCoresPtr,

 char reason[PVTM_REASON_SIZE],

 char backoffIfTooHigh,

 const char* appInfoJson,

 const char* appLinksJson

);

Here is a description of the parameters:

 cfgMinScoreApplyPinningThreshold – this allows PVTM Agent to suppress run solution

requests to be sent unless the score is above a certain level. This is useful to suppress

thread pinning automatically if the system is in an idle state.

PVTM User’s Guide Page | 29 Copyright © 2016
Pontus Networks

 cfgDeltaScoreThresholdPercentage - The percentage (as an integer, so 50% would be 50)

that the score has to differ from either the moving average or the last score to trigger a

re-run.

 cfgScoreSimpleMovingAveragePeriod if this is greater than 0, it will make the callback look

at a moving average rather than just the last score to determine when to trigger a re -run.

 cfgUnsolicitedRunThreshold - a threshold that if greater than 0 will cause a run request to

be true regardless of the moving average every cfgUnsolicitedRunThreshold calls to this

function.

 newScoreStr - a new score that reflects the current state of the system. This is a mutually

exclusive value to the runSolutionScore. If runSolutionScore is not null, it overrides this

value. This will also cause the moving average to be changed.

 runSolutionScore - if this is null, then the newScoreStr will be used; otherwise, this will

make this function passively compare the score without modifying the moving average or

last value.

 unsolicitedRunCounterPtr - an optional pointer to hold the current counter externally. If

this is NULL, a local static variable will be used. Note that if not null, this should retain the

counter across calls to this function.

 normAppsSendCurrentCoresPtr - this cannot be null! This is used to control whether or

not we need to send the current cores where the threads are running as part of the

normalized request.

 reason – this allows the user to get a textual description of why the simulation request was

sent. This information is sent with the request, and is used for diagnostic purposes in the

score time series.

 backoffIfTooHigh - Boolean variable that determines whether or not we should back out if

there is a spike in the score greater than pvtm_agent_score_moving_average_period *

pvtm_agent_delta_score_threshold_percentage / 100

 appInfoJson - JSON-style object with the latest SET_APPS data sent to the PVTM Thread

Manager.

 appLinksJson - JSON-style object with the latest SET_APPLINKS data sent to the PVTM

Thread Manager.

A sample makefile and 'hello world' implementations can be found under the following path:

<installation directory root>/pontus-vision/4.7.0/linux/user-override

Command and Control

The command and control activities enable PVTM Agent to be remote-controlled for actions such as

making it passive, active, getting the status, and even setting the configuration file contents. The

command and control activities use two message types; the following sequence diagram shows the

flow of these messages:

PVTM User’s Guide Page | 30 Copyright © 2016
Pontus Networks

Figure 4 Command and Control Sequence Diagram

Note that if there are not any outstanding User Input requests, PVTM Agent ignores the

COMMAND_REQUEST messages. The following sections go over the COMMAND_REQUEST and

COMMAND_REPLY message formats:

COMMAND_REQUEST

PVTM Agent periodically sends the COMMAND_REQUEST message to PVTM Simulator to see

whether any commands are outstanding.

The option pvtm_agent_timer_poll_command_req_interval_ms controls the frequency of these

messages. The body of the request message simply has the word "GET" as a placeholder, and

PVTM Simulator currently ignores it. The reply message can have the following types of command

and control requests:

COMMAND_SET_PASSIVE

This puts PVTM Agent in passive mode, and causes it to send the status to PVTM Simulator via a

COMMAND_REPLY message.

COMMAND_SET_ACTIVE

This command puts PVTM Agent in active mode, and causes the status to be sent back via a

COMMAND_REPLY message.

PVTM Agent PVTM Simulator

COMMAND_REQUEST

COMMAND_REPLY

PVTM GUI

JMS Message
User

Input

PVTM User’s Guide Page | 31 Copyright © 2016
Pontus Networks

COMMAND_RESET

This command puts PVTM Agent in passive mode, and resets all the thread pinning strategies,

including for the junk cores. This causes PVTM Agent to send back a Passive Status via a

COMMAND_REPLY message.

COMMAND_GET_CONFIG

This command reads the pvtm.cfg file contents, and sends it back to PVTM Simulator in a

COMMAND_REPLY message.

COMMAND_GET_ACTIVE_STATUS

This command causes PVTM Agent to send the status back to PVTM Simulator in a

COMMAND_REPLY message.

COMMAND_SET_CONFIG:SIZE=<size>:<data>

This command causes PVTM Agent to replace the contents of its pvtm.cfg file with the data sent.

First, PVTM Agent writes a temporary configuration file in the same path as the pvtm.cfg file, but

with a .tmp extension where it stores the data in transit. Once PVTM Agent receives the full data

in the .tmp file, it backs up the original file into a new pvtm.cfg file with a <timestamp> suffix .

Lastly, PVTM Agent copies the new data into a new pvtm.cfg file.

COMMAND_FORCE_RUN_SOLUTION_CACHED:SIZE=<size>:<data>

This command causes PVTM Agent to process the attached data and apply it as if it were a

RUN_SOLUTION_CACHED response message.

COMMAND_TRAIN_FUZZY_CACHE:SIZE=<size>:<data>

This command causes PVTM Agent to process the attached data and apply it to build a fuzzy cache

using an artificial neural network. The data has a series of inputs and outputs that enable PVTM

Agent to train a fuzzy cache that helps speed up simulation results. The data can span several

messages, and consists of a JSON-like object similar to the following:

{

 numThreads:3,

 numCores:2,

 params:

 {

 numEpochs:100000,

 numThreads: 1,

 algorithm: 2,

 learningRate: 0.35

 desiredError:0.01,

 bitFailLimit:0.09,

 clearPrevious:true,

PVTM User’s Guide Page | 32 Copyright © 2016
Pontus Networks

 cascadeTrainingMode: true,

 trainingArea:"./pvtm-agent-fuzzy-cache"

 }

 data:

 [

 {

 'i': [0,0,0,0, 0,0,0,0, 0,0,0,0],

 'o': [0,0,1]

 },

 {

 'i': [10,0,0,0, 10,0,0,0, 10,0,0,0],

 'o': [0,0,1]

 },

 {

 'i': [10,0,0,0, 10,0,0,0, 20,0,0,0],

 'o': [1,1,0]

 },

 {

 'i': [30,0,0,0, 10,0,0,0, 10,0,0,0],

 'o': [0,1,1]

 },

 {

 'i': [0,1,0,0, 0,1,0,0, 0,1,0,0],

 'o': [0,1,1]

 },

 {

 'i': [0,0, 10,1,0,0, 10,1,0,0, 10,1,0,0],

 'o': [0,1,1]

 },

 {

 'i': [10,1,0,0, 10,1,0,0, 20,1,0,0],

 'o': [0,0,1]

 },

 {

 'i': [30,1,0,0, 10,1,0,0, 10,0,0,0],

 'o': [1,0,0]

 }

]

}

Where:

 numThreads is the maximum number of threads in this batch of data

 numCores is the total number of cores in this batch of data (useful to ensure that the 'o'

field in the output data is within range

 parms is an optional object that has the following parameters that affect the training of the

neural network:

o numEpochs:100000 – this controls the maximum number of training cycles that

PVTM Agent will use to start the neural network

o numThreads: 1, - this controls the number of threads that PVTM Agent starts to

train the neural network. The only supported value for this is currently 1

PVTM User’s Guide Page | 33 Copyright © 2016
Pontus Networks

o algorithm: "RPROP" – this string parameter can be one of the following values:

 0 - INCREMENTAL, - Standard backpropagation algorithm, where the

weights are updated after each training pattern. This means that the

weights are updated many times during a single epoch. For this reason

some problems will train very fast with this algorithm, while other more

advanced problems will not train very well.

 1 - BATCH - this is a standard backpropagation algorithm, where the

weights of the neural network are updated after calculating the mean

square error for the whole training set. This means that the weights are

only updated once during an epoch. For this reason some problems will

train slower with this algorithm; however, since the mean square error is

calculated more correctly than in incremental training, some problems will

reach better solutions with this algorithm.

 2 – RPROP (The default) - this uses the rprop algorithm that automatically

adapts to the problem and does not require other parameters such as the

learning rate.

 3 - QUICKPROP - this is a more advanced batch training algorithm which

achieves good results for many problems. The quickprop training algorithm

uses the learningRate parameter along with other more advanced

parameters, but it is only recommended to change these advanced

parameters, for users with insight in how the quickprop training algorithm

works.The quickprop training algorithm is described by [Fahlman, 1988]. ,

 4 – SARPROP – this is the SARPROP algorithm: a simulated annealing

enhancement to resilient back propagation. See

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8197&rep=r

ep1&type=pdf)

o learningRate: 0.35 – the learning rate of the neural network; this value is ignored

for the RPROP (default) algorithm.

o desiredError:0.01 – the desired error rate for the neural network.

o bitFailLimit:0.09 – the tolerance of the results (core number +/- bitFailLimit) that

PVTM Agent will use whilst training the neural network.

o clearPrevious: true – determines whether or not the previous fuzzy cache should

be cleared.

o cascadeTrainingMode: true – determines whether the fuzzy cache will be trained in

cascade mode; cascade mode allows the fuzzy cache to dynamically grow hidden

neural networks layers, whereas normal mode requires the neural network to be

static. If this option is set to false, the fuzzy cache is created without any hidden

layers, which reduces the size, but can also reduce the efficiency.

o trainingArea: :"./pvtm-agent-fuzzy-cache" – the location of the neural network on

the PVTM Agent's local disk.

 data is an array of objects that have two arrays:

o 'i' – input data; this integer array uses sets of 4 integers for each thread:

 CPU % util,

 the last core where the thread ran,

 the number of connections to other threads,

 the sum of all the weights across all the connections.

o 'o' – output data; this integer array as the core number for each thread.

Note that to reduce the burden on the PVTM GUI due to the potentially large amounts of data, the

PVTM Simulator is the one that queries the data locally, and sends the message above to PVTM

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8197&rep=rep1&type=pdf

PVTM User’s Guide Page | 34 Copyright © 2016
Pontus Networks

Agent once the query is processed. The message between PVTM GUI and PVTM Simulator only has

the query parameters; it is a JSON-like structure similar to the following:

{

 leftTime: 1455098279772,

 rightTime: 1456098279772,

 maxEntries: 1000

 numEpochs:100000,

 numThreads: 1,

 algorithm: 2,

 learningRate: 0.35

 desiredError:0.01,

 bitFailLimit:0.09,

 clearPrevious:true,

 cascadeTrainingMode: true,

 trainingArea:"./pvtm-agent-fuzzy-cache"

}

Where:

 leftTime is the epoch value in milliseconds with the left-most boundry in the time series

(the earlier timestamp) to be queried (inclusive).

 rightTime is the epoch value in milliseconds with the right-most boundry in the time series

(the later timestamp) to be queried (inclusive).

 maxEntries caps the maximum number of data entries (see above) sent to train the

Artificial Neural Network in the PVTM Agent.

 <all the other fields are the same as above>.

COMMAND_TRAIN_FUZZY_CACHE_STOP

This stops any fuzzy cache training in progress on the given PVTM Agent, and causes it to send the

status to PVTM Simulator via a COMMAND_REPLY message.

COMMAND_QUERY_FUZZY_CACHE:SIZE=<size>:<data>

This command causes PVTM Agent to process the attached data and apply it to query a fuzzy

cache using an artificial neural network. The data has a series of inputs for a single epoch point in

time. It enables the PVTM GUI to verify the results that the given neural network will respond are

valid, and indeed improve the performance. After the query is completed, PVTM Agent send the

status to PVTM Simulator via a COMMAND_REPLY message.

The data in the COMMAND_QUERY_FUZZY_CACHE request message can span several messages,

and consists of a JSON-like object similar to the following:

{

 trainingArea:"./pvtm-agent-fuzzy-cache",

 numThreads: 3,

 epoch: 1455066061526,

 i:[0,0,0,0, 0,0,0,0, 0,0,0,0],

 agentName: 'leo2-pc'

}

Where:

PVTM User’s Guide Page | 35 Copyright © 2016
Pontus Networks

 trainingArea: :"./pvtm-agent-fuzzy-cache" – the optional location of the neural network on

the PVTM Agent's local disk.

 numThreads: 3 – this has the number of threads included in the 'i' parameter below

 epoch: 1455066061526 – this has the timestamp in milliseconds since 1970 for this

particular request.

 i:[0,0,0,0, 0,0,0,0, 0,0,0,0] - 'i' – input data; this integer array uses sets of 4 integers for

each thread:

o CPU % util,

o the last core where the thread ran,

o the number of connections to other threads,

o the sum of all the weights across all the connections.

 agentName: 'leo2-pc' – an optional parameter that has the name of the agent that the

data belongs to. This can be used if a 'foster' PVTM Agent is used to train the data on

behalf of other agents.

COMMAND_QUERY_FUZZY_CACHE_STOP

This stops any fuzzy cache queries in progress on the given PVTM Agent, and causes it to send the

status to PVTM Simulator via a COMMAND_REPLY message.

COMMAND_REPLY

PVTM Agent only sends a COMMAND_REPLY message to PVTM Simulator in reply to a

COMMAND_REQUEST message. As such, the body of the COMMAND_REPLY messages always start

with the name of the original command followed by either the token ":DATA:<data>", by the

token ":ERROR:<error str>", or by the token "OK".

Here are a few examples:

 "COMMAND_SET_PASSIVE:OK" confirmation that .the set passive command was

successfully executed; there are no error messages associated with this command.

 "COMMAND_RESET:OK" confirmation that .the reset command was successfully executed;

there are no error messages associated with this command.

 "COMMAND_SET_ACTIVE:OK" confirmation that .the set active command was successfully

executed; there are no error messages associated with this command.

 "COMMAND_GET_ACTIVE_STATUS:DATA:true" the current status is Active.

 "COMMAND_GET_ACTIVE_STATUS:DATA:false" the current status is Passive.

 "COMMAND_SET_CONFIG:ERROR:<desc>" Any errors found whilst creating the new

configuration file or backing up the old one

 "COMMAND_SET_CONFIG:OK" confirmation that the command was successfully executed

and that the new pvtm.cfg file is created, and the old one backed up.

 "COMMAND_GET_CONFIG:ERROR:<desc>" Any errors found whilst reading the existing

pvtm.cfg file.

 "COMMAND_GET_CONFIG:DATA:<data>" The contents of the current pvtm.cfg file.

 "COMMAND_FORCE_RUN_SOLUTION_CACHED:OK" The new RUN_SOLUTION_CACHED_REPLY

was successfully applied.

 "COMMAND_FORCE_RUN_SOLUTION_CACHED:ERROR:<msg>"

The new RUN_SOLUTION_CACHED_REPLY was NOT applied.

PVTM User’s Guide Page | 36 Copyright © 2016
Pontus Networks

 "COMMAND_TRAIN_FUZZY_CACHE:OK"

The COMMAND_TRAIN_FUZZY_CACHE:SIZE=<size>:<data> message was fully received,

and processing started.

 "COMMAND_TRAIN_FUZZY_CACHE:ERROR:<desc>" Any errors found whilst processing

the COMMAND_TRAIN_FUZZY_CACHE:SIZE=<size>:<data> message

 "COMMAND_TRAIN_FUZZY_CACHE:UPDATE:<data>" Intermediate results of the fuzzy

cache training, (e.g. "45%" – a short string with the percentage completed).

 "COMMAND_TRAIN_FUZZY_CACHE:DATA:<data>" The results of the fuzzy cache training,

including error rates, and whether the network was successfully trained.

 "COMMAND_TRAIN_FUZZY_CACHE_STOP:OK" The fuzzy cache training was successfully

stopped.

 "COMMAND_QUERY_FUZZY_CACHE:DATA:<data>" The results of the fuzzy cache query,

including the new thread pinning strategy positions for the initial query item. The data is

in a JSON-like structure similar to this:

{

 numThreads: 3,

 epoch: 1455066061526,

 o:[2,1,20],

 agentName: 'leo2-pc',

 errorPcnt:0.0

}

Where:

o numThreads is the number of threads in the reply

o epoch is the timestamp in milliseconds of the original request

o o is a JSON Array with integers representing the recommended cores for each of

the input threads

o agentName is an optional string that matches the original agent name in the

request

o errorPcnt is an optional percentage (from 0.0 to 1.0) indicating how much error

the network currently has. This is not currently used, and is specified here for

future implementations.

 "COMMAND_QUERY_FUZZY_CACHE:ERROR:<desc>" Any errors found whilst processing

the queried data.

 "COMMAND_QUERY_FUZZY_CACHE_STOP:OK" The fuzzy cache query was successfully

stopped.

Command line utilities to send Control Messages

As of version 4.7.0.26, a basic command line utility was created to mimic the behaviour of the

PVTM GUI. The PVTMAgentRemoteControl is able to send the COMMAND_REQUEST messages,

above, and wait for the COMMAND_REPLY responses. Users are now able to externally perform

batches of tests with different configurations without the GUI, or enable, disable, PVTM Agent, or

even run ad-hoc simulations.

PVTMAgentRemoteControl

This utility enables users to dynamically send and receive commands to a specific PVTM Age nt

from the command line

PVTM User’s Guide Page | 37 Copyright © 2016
Pontus Networks

Usage:

 java -cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl

<agent name> <command> [<command data file>]

Where:

<agent name> is the name of the agent as seen in the GUI

<command> is the command to be sent e.g. (COMMAND_SET_PASSIVE,

COMMAND_RESET, COMMAND_SET_ACTIVE, COMMAND_SET_CONFIG,

COMMAND_GET_ACTIVE_STATUS, COMMAND_GET_CONFIG,

COMMAND_FORCE_RUN_SOLUTION_CACHED, COMMAND_TRAIN_FUZZY_CACHE,

COMMAND_TRAIN_FUZZY_CACHE_STOP, COMMAND_QUERY_FUZZY_CACHE,

COMMAND_QUERY_FUZZY_CACHE_STOP])

[<command data file>] is the optional file with the text to send as a part

of the command (no need to include the SIZE=<size> portion; the PVTM

Simulator does this already).

Note: to set the JMS broker name, or the topics to/from the PVTM Simulator, use the following

JVM -D options before the class name:

java -Dpontus.agent.broker.name="tcp://localhost:61616" \

-Dpv.threadmgr.to.gui.topic="pvtm.threadmgr.to.gui.topic" \

-Dpvtm.threadmgr.from.gui.topic="pvtm.threadmgr.from.gui.topic" \

-cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl \

<agent name> <command> [<command data file>]

Also, note that it will usually take several seconds for a command to be successfully completed.

This is primarily due to the current architecture, which was design to grow to hundreds of

thousands of PVTM Agents at the cost of additional latency. PVTM Agent polls the PVTM Simulator

periodically for command requests, and the requests made by this tool first go to the PVTM

Simulator, and then to the agent once it requests a new command. This double cycle causes

delays. PVTMAgentRemoteControl will block until a reply message arrives.

Here are some useful examples:

The following will set the configuration of agent leo2-pc, with the contents of the file

windows/pvtm.cfg.

$ java -cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl

leo2-pc COMMAND_SET_CONFIG windows/pvtm.cfg

//# Received Reply message Agent (leo2-pc): command: COMMAND_SET_CONFIG;

status: OK

The following will get the current configuration of agent leo2-pc:

$ java -cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl

leo2-pc COMMAND_GET_CONFIG

The following will make PVTM agent leo2-pc passive:

$ java -cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl

leo2-pc COMMAND_SET_PASSIVE

PVTM User’s Guide Page | 38 Copyright © 2016
Pontus Networks

//# Received Reply message Agent (leo2-pc): command: COMMAND_SET_PASSIVE;

status: OK

The following will make PVTM agent leo2-pc active:

$ java -cp vision-server.jar com.pontusnetworks.utils.PVTMAgentRemoteControl

leo2-pc COMMAND_SET_ACTIVE

//# Received Reply message Agent (leo2-pc): command: COMMAND_SET_ACTIVE;

status: OK

Terms and Concepts Definitions

To understand how PVTM Agent operates, it is important to recap the following terms and

concepts:

Allowed Cores – the list of cores on which an application or process is allowed to run

App link – an inter-thread connection; the app links can be manually added, or automatically

profiled by PVTM Agent.

Assume All Threads Talk – When this app property is set to true, the model will artificially add links

between all the threads within an application. Users should only use this in environments where

the inter-thread communication patterns are not automatically discovered.

Chrt – This Linux construct (change real-time) increases thread priority. The same setting also

works for windows. PVTM increases the priority of any matching thread if running as root or

administrator.

Context Switch Cost - the multiplier that the simulator will use to penalize the score for context

switches. The formula used by the simulator is the following:

Pct =
ln(𝑛𝑢𝑚𝑇ℎ𝑟𝑒𝑎𝑑𝑠) ∗ 𝐶𝑃𝑈𝑈𝑡𝑖𝑙 ∗ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑆𝑤𝑖𝑡𝑐ℎ𝐶𝑜𝑠𝑡

𝐶𝑝𝑢𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

Where:

numThreads is the number of threads currently scheduled in the core,

CPUUtil is the total CPU percentage of the threads currently scheduled in the core, or 0.01

if the total utilization is zero)

ContextSwitchCost is the value set in the SET_COMPUTER message

CPUScalingFactor is either 1, or the value set in the RUN_SOLUTION_CACHED request

message

CPU Percentage Auto Passive – an automatic kill-switch to disable the thread manager pinning

strategies after either the total CPU utilization for the whole machine, or a single core 's CPU

utilization increases beyond a certain level.

Ignore After Pinning – This construct makes PVTM Agent avoid run simulation requests for a grace

period after it applies a new thread execution layout.

Inactive IRQs – On Linux, PVTM Agent can ignore IRQs that are not active.

PVTM User’s Guide Page | 39 Copyright © 2016
Pontus Networks

Inflate CPU Threshold – This is a feature where PVTM Agent artificially inflates the total CPU

utilization. PVTM Agent triggers this action if more than two threads are running in the same core,

and their CPU utilization is greater than the threshold. This forces PVTM Simulator to try and

separate out the threads into separate cores.

IRQ – Interrupt ReQuest – this is a Linux concept, where a device driver executes code to handle

data coming in or out of a device. On Linux, users can achieve big performance gains by keeping

the cores where the IRQs are executing as close to both the physical device location, and the

application threads utilizing that device. As an example, a network card's IRQ should be pinned to

run in the same CPU as the Network card, and the I/O application threads should be pinned to run

as close to the device as possible.

IRQ Files – IRQs related to I/O for block devices (e.g. disk operations). PVTM Agent enables users

to add rules that describe which files in the file system belong to which interrupt devices.

JSON – JavaScript Object Notation – this is the rough format used for the contents of some of the

more complex messages coming to/from the simulator.

Junk Cores – Junk cores are cores dedicated to non-performance-sensitive applications.

Background processes, including some Kernel threads run on junk cores to avoid interference with

performance sensitive applications. PVTM Agent can move all non-matching processes, including

itself to a list of Junk Cores. It is usually recommended that more than one junk core is used in

case an application running in the junk cores uses 100% CPU utilization and renders the server

inaccessible.

Lock Stat Countdown – When PVTM Agent profiles locks between threads, it has to be as

unobtrusive as possible. To minimize the impact on the apps, PVTM Agents will just profile the

first 'Lock Stat Countdown' calls every polling period.

Moving Average Period – the number of previous scores to be used in a moving average of scores.

PVTM Agent keeps a rolling simple moving average of the last 'Moving Average Period' scores, and

uses this number to determine whether a new thread pinning strategy is required.

Normalized App – PVTM applies a hash to RUN_SIMULATION_CACHED requests in an attempt to

match previously simulated results. In order to be able to use this feature across servers, and for

processes that have been recently created, the data needs to be stripped of process IDs, or any

application-specific semantics. A Normalized app is an application definition that has had PIDs and

TIDs replaced with an index number, so instead of having thread id 12345 and process ID 33234,

the normalized app would have a thread id of 0, and a process ID of 0. For a more complete

example, please compare the example SET_APPS message with the first part of the example

RUN_SOLUTION_CACHED request message.

NUMA – Non-uniform memory access; a server architecture adopted by most major manufacturers

where each CPU Socket in a server has its own local memory, but where all the memory is

accessible via remote CPU Sockets; in NUMA architectures, accessing the local memory bank is

significantly faster than accessing a remote memory bank.

Passive Pinning Mode – PVTM Agent is configured to start in passive pinning mode by default.

When this is set, PVTM Agent will never act upon any automatic thread pinning strategies sent to

it, and rather it will just collect data and send it back to the simulator.

PVTM User’s Guide Page | 40 Copyright © 2016
Pontus Networks

Premium Cores – PVTM Agent considers premium cores any cores that are not Junk Cores. The

simulator runs the applications that are performance-sensitive on Premium Cores.

Premium Junk Cores – This concept allows users to choose a sub-set of cores to run non-matching

applications within the junk cores. This must always be a sub set of the Junk Cores. This is

particularly useful if hyperthreading is turned on in a server, and a user wants to logically disable

them. This can be done by setting the list of junk cores to all the hyper threads, plus a couple of

real junk cores, and then setting the premium junk cores to just the real junk cores. This would

prevent the simulator from using any hyper threads or the normal junk cores, and it would force

PVTM Agent not to run any apps in the hyperthreads.

Proto Weights un_i4_i6_ld_pf_lk_sm – There are two proto weights arrays used to set the min and

max values of inter-thread communication connection weights. These two arrays allow users to

bias the weights of inter-thread connections. They contain the min and max values for the

normalized weights of the following protocols:

 un - unknown protocol

 i4 - ipv4 sockets

 i6 - ipv6 sockets

 ld - local domain sockets

 pf - pipes and files

 lk - locks

 sm - shared memory

These arrays will spread the actual values for the protocols (the value in parenthesis of how many

unlocks for locks, or bytes were sent on sockets between these artificial min and max values. The

default values below will make all the unknown protocols with a weight of 1, all the ipv4,v6, and

local domain sockets spread between 20 and 30, all the pipes and files between 1 and 5, all the

locks at 1, and all the shared memory areas at 10. These will effectively bias the model towards

favouring socket traffic over locks, pipes and files, and shared memory

Regex – short for Regular Expression – this is a very powerful language used extensively in PVTM

Agent to filter out or match strings.

Run Solution Command – This is a string that PVTM Agent sends to the simulator whenever a

RUN_SOLUTION_CACHED request is required. This option can control how the simulation will be

run, including the amount of simulation time, as well as some of the algorithms used to place the

threads into the cores in the model.

Same Core Cost – When PVTM Agent creates a SET_COMPUTER message, it builds a latency

matrix with the distance between cores. The matrix works well for the distance between different

cores; however, the distance between a core and itself is not computed, and is rather filled in by

the same cores cost. If this value is too low, the model will tend to bias strong connections

between threads to occur in the same core. This can impact the application performance by

generating too many context switches. To avoid this, this value should be set to a high value.

The only exception is virtual machines. When using VMs, the cost of context switches is not

always as high as on a physical server. This is usually the case because virtual cores in a VM are

really a software thread in the hypervisor. As such, the context switches in the VM do not

necessarily cause a real full context switch, making the VM threads act as green threads. This, of

course depends on the hypervisor and the application itself. It is recommended that thorough

empirical tests are done before setting the same core cost to too low a value.

PVTM User’s Guide Page | 41 Copyright © 2016
Pontus Networks

Thread pinning – Thread pinning is the action of telling the scheduler in which core(s) one or more

threads are allowed to run.

Timer Poll Config File Interval – PVTM Agent can be configured to poll a configuration file

periodically to look for any dynamic options. This is a mechanism to change rules of artificial inter -

thread connections without stopping and starting PVTM Agent.

Timer Proc Interval – PVTM Agent uses several timers to poll for different types of information.

The Timer Proc Interval is the interval, in ms, that PVTM Agent polls the operating system for new

applications that match the regex filter.

Timer Thread Interval – Once PVTM Agent finds a list of processes that match the regex filter, it

will introspect the threads for their CPU utilization. The Timer Thread Interval controls how often

this happens. Making this value too long may makes the thread manager lose too many thread

patterns; similarly, making this value too short may impact the performance of PVTM Agent, and

make it too reactive to small changes in application behaviour.

Timer Command Request Interval –PVTM Agent periodically checks whether PVTM Simulator has

any commands available to be sent to it. This timer controls how often the polling occurs. The

commands can be putting the agent into an active or passive mode, creating or retrieving

configuration files, or even forcing a RUN_SOLUTION_CACHED response message.

Unsolicited Run Threshold – PVTM Agent can be configured to send a RUN_SOLUTION_CACHED

request message optionally without being triggered by any changes in scores. The unsolicited run

threshold controls how often these unsolicited requests occur.

Web Sockets Payload – PVTM Agent uses web sockets to communicate to the simulator. The

payload size determines how much data is allowed to be sent between them. In Applications that

have very large lists of AppLinks, or very high number of threads, the size of the web sockets

payload may need to be increased.

Zapping cores – PVTM Agent can, (currently only on Linux) clear out, or zap a number of cores to

try and move non-essential threads from any given set of cores. Please be warned that this is a

VERY INTRUSIVE option that should only be applied outside of production hours, and with a

minimal number of processes running. The key benefit is that this enables low-latency

applications to run with as few interruptions as possible.

Command Line

PVTM Agent is located in an operating-system specific folder inside the installation directory (e.g.

/opt/pontus-vision/4.7.0/linux, or /opt/pontus-vision/4.7.0/windows). All the configuration files

and libraries required are located within this directory; as such, the whole directory can be copied

to servers that need to be optimised using any mechanism to copy the files.

Here are the command line arguments for PVTM Agent:

 pvtm-agent

[-r or --regex=<regular expression to match apps>]

[-u <host> or --url=<url to connect (e.g.

ws://localhost:8444/threadmgr/myhost)>]

PVTM User’s Guide Page | 42 Copyright © 2016
Pontus Networks

[-c or --config=<conf>]

[-l or --load=[id,junkCoresInSquareBrackets,contextSwitchCost,

sameCoreCost,output.txt]

[-i <pid> or --inject=<pid> - inject the LD_PRELOAD behaviour on <pid>]

[-d or --dump (dump the shared memory area, and the cpu info and exit)]

[-t reset or --taskset='reset' - to unpin all processes, or

'premium:<pid>' to move pid and all its threads to the premium (non-junk)

cores,or

'[{"pid":9672,"threadIds":[9672,9684,9689],"coreIds":[0,4,4],"numaZoneIds":[

[0],[0],[0]],"score":"2217"}]'

The following table shows the options in more detail:

Option Name Default Value Description

--regex "" (empty string) Controls the regular expression used by PVTM Agent to

find applications that need to be optimized

--url or -u "localhost" Points PVTM Agent to a simulator process. This option

can be set using two modes: the short notation uses a

host name only, with a default port of 8444; the long

version uses the full URI notation:

ws://<sim host>:<port>/threadmgr/<agent host>

--config "./pvtm.cfg" This option selects the full path to a configuration file to

be used to control various aspects of PVTM Agent. See

the PVTM Agent Configuration section for more details

--load "" (empty string) Enables users to capture the server's model information

for importing this server into the simulator. This option

has a comma-separated list of items with the server id,

the list of junk cores in square brackets, the same core

cost, and the name of the output file to capture the

data

--inject or -i "" (empty string) In windows only it enables PVTM Agent to profile a

particular application; the value should be a valid PID

--ps_mode or -p n/a This dumps a list of all the inter-thread communication

patterns in the system. Note that 64 bit applications

can only be monitored by 64 bit versions of PVTM

Agent, and similarly, 32-bit versions of PVTM Agent can

only monitor 32-bit processes.

-t or –taskset "" (empty string) this option has two potential values; it can either be set

to the word 'reset', or to a text representation of the

RUN_SOLUTION_CACHED response message. When

set to the word 'reset', PVTM Agent removes any

thread affinity from all the applications that are running

in the system.

In addition to the command line parameters above, the pvtm-agent executable on Linux also

doubles as a completely different application when its name is changed to irq-helper. When a

symbolic link with this name points to the pvtm-agent file, the irq-helper application can be run.

IRQ helper is a utility that shows concise stats about interrupts that match a particular pattern.

When in irq-helper mode, PVTM Agent uses the following command line arguments:

./irq-helper 'regex' <-c [max-cpu]|-s [num runs]>

Where:

PVTM User’s Guide Page | 43 Copyright © 2016
Pontus Networks

 'regex' is a regular expression that matches an IRQ

 -c shows a pvtm config dump of the matching IRQs followed by an optional

max

 cpu util across all IRQ matches

 -s (default) shows irq stats followed by an optional number of runs

(defaults

 to forever if blank)

(e.g. ./irq-helper 'eno|eth')

The output of IRQ helper when in –c mode is a configuration compatible with the

pvtm_agent_irq_files option. The output of IRQ helper when in –s mode has one or more the

following lines with the following contents:

IRQ: 19 The number of the interrupt request handler

IO-APIC-fasteoi The type of interrupt

eno16777736: The device name

deltaIRQs = 1 The number of interrupts sent since the last line

lastCores = 0 The last core(s) where this IRQ ran

allowedCores = 0-1 The cores where this device is connected

cidrs=0.0.0.0/32,

 0.0.0.0/0,

 169.254.0.0/16,

 192.168.51.0/24 The routing table information associated with this

interrupt (if it is an IPv4 device)

Environment Variables

PVTM Agent uses a few environment variables to control various aspects of its operat ion. The

following sections show the main environment variables and their use.

LD_PRELOAD

On Linux, PVTM Agent relies on applications to set the LD_PRELOAD environment variable so they

can share key metrics used to find inter-thread communication patterns. Though PVTM Agent

needs other apps to set this variable, this variable MUST NOT BE SET for PVTM Agent itself. A

fail-safe mechanism prevents PVTM Agent from starting if the LD_PRELOAD environment variable

contains the words "libpvtm-agent-preload"

PVTM_AGENT_CONFIG_FILE_NAME

The default name for the PVTM Agent's config file is ./pvtm.cfg. This environment variable

overrides this default value, allowing users to set it to any other name or path.

PVTM_AGENT_FILENAME_FORMAT

This environment variable controls the location of the shared memory area that PVTM Agent uses

to communicate with applications using the LD_PRELOAD environment variable. Note that IF THE

PVTM User’s Guide Page | 44 Copyright © 2016
Pontus Networks

DEFAULT VALUE IS NOT SUITABLE, THIS VARIABLE MUST BE SET ON BOTH PVTM AGENT

AND THE APPLICATION BEING MONITORED.

The default location for the shared memory area is /tmp/pvtm_agent/shmem if this variable is not

set.

PVTM_AGENT_FORCE_MUX_BUSY_POLL

This environment variable controls whether mutexes are marked for a busy poll, as well as the

number of times the application will be spinning waiting for the mutex to unlock. This option only

works on Linux applications using the LD_PRELOAD environment variable to load our shared

library. The default value of either 0, or if the variable is unset means the user application will

work normally. A value of -2 causes any applications calling pthread_mutex_lock to spin polling

forever until the mutex is unlocked.

Any positive values are the number of times the application will poll the mutex waiting for it to be

unlocked.

WARNING: this may significantly increase the CPU utilization of any threads calling the

pthread_mutex_lock function, but should improve the application performance.

The following example will cause the thread calling mutex lock to spin forever:

export PVTM_AGENT_FORCE_MUTEX_BUSY_POLL=-2

PVTM_AGENT_FORCE_MUX_BUSY_POLL_FILTER

This environment variable has a | delimited list of strings that must be present in all the thread

names that are supposed to use the busy_poll facility described above. If this option is not set, or

set to an empty string, then all threads will do a busy spin when calling epoll_wait().

export PVTM_AGENT_FORCE_MUX_BUSY_POLL_FILTER="reader|writer"

PVTM_AGENT_FORCE_SO_BUSY_POLL

This environment variable controls whether sockets are marked for a busy poll, as well as the

number of times the application will be spinning waiting for traffic to arrive in a socket. This

option only works on Linux applications using the LD_PRELOAD environment variable to load our

shared library. The default value of either 0, or if the variable is unset means the user application

will work normally. A value of -1 causes any applications calling epoll_wait to spin polling for data

to be available from the socket ignoring the timeout argument sent in the epoll_wait API. A value

of -2 will make the timeout variable be honoured during the spin, causing the application to only

spin for the timeout period.

Any positive values are the number of times the application will poll the epoll_wait function waiting

for data to arrive.

WARNING: this will significantly increase the CPU utilization of any threads calling the epoll_wait

function, but should improve the application performance.

PVTM User’s Guide Page | 45 Copyright © 2016
Pontus Networks

The safest value when using this option is to set it to the adaptive mode (-2) :

export PVTM_AGENT_FORCE_SO_BUSY_POLL=-2

PVTM_AGENT_FORCE_SO_BUSY_POLL_FILTER

This environment variable has a | delimited list of strings that must be present in all the thread

names that are supposed to use the busy_poll facility described above. If this option is not set, or

set to an empty string, then all threads will do a busy spin when calling epoll_wait().

export PVTM_AGENT_FORCE_SO_BUSY_POLL_FILTER="reader|writer"

PVTM_AGENT_SHMEM

This environment variable enables users to select which directory will be used for the shared

memory area files used by PVTM Agent to gather stats from user applications. The default value

on Linux is /tmp/pvtm_agent/shmem/, whereas on Windows it is c:\Pontus\pontus-vision\4.7.0

PVTM_DISABLE_HUGE_PAGES

This environment variable disables the use of huge pages on Linux. It is useful if an error

message complaining of no "TLS Huge Pages found" appears, in which case this should be set to 1

as follows:

export PVTM_DISABLE_HUGE_PAGES=1

Note: This is required when using Informatica's UMP stores and LD_PRELOAD, or the

ONLOAD_PRELOAD settings.

PVTM_DISABLE_NUMACTL_LOCAL

This environment variable disables the use of local memory allocation on Linux. It is useful if a

behaviour other than numactl --localaloc is desired. Setting this variable to 1 should disable this:

export PVTM_DISABLE_NUMACTL_LOCAL=1

PVTM_ENABLE_SELF_PINNING

This environment variable controls whether the LD_PRELOAD library on Linux will attempt to look

for a previous pinning strategy result saved by PVTM Agent when the option

pvtm_agent_store_last_core_on_command_force_run_solution_cached is set. If this option is

empty, or not set, this feature is disabled. This currently only works on Linux.

PVTM User’s Guide Page | 46 Copyright © 2016
Pontus Networks

PVTM_PID_FILE_DIR

On Linux only, PVTM Agent uses a PID file to prevent more than one process running on the same

server. The default value for the directory where this file resides is to look up the environment

variable PVTM_PID_FILE_DIR. If this variable is not set, the default is the HOME environment

variable.

pvtm.cfg Configuration File

PVTM Agent is configured by using a pvtm.cfg file that usually resides in the same directory as

PVTM Agent itself. The pvtm.cfg file can refer to the pvtm.cfg files by using the @include "file

name" directives. The pvtm.cfg file will always use the latest instance of a variable , so if an

@include directive is added to the top of the file, individual options can be overridden below that.

BNF Grammar

Comments and include directives are not part of the grammar, so they are not included here.

Comments follow the 'C++' and 'Java' language formats. Single-line comments start with two

slashes (//), and go to the end of the line. Multi-line comments start with a slash and a star (/*)

and end with the first (*/).

Below is the Backus-Naur Form (BNF) grammar for configuration files:

configuration = setting-list | empty

setting-list = setting | setting-list setting

setting = name (":" | "=") value (";" | "," | empty)

value = scalar-value | array | list | group

value-list = value | value-list "," value

scalar-value = Boolean | integer | integer64 | hex | hex64 | float

 | string

scalar-value-list = scalar-value | scalar-value-list "," scalar-value

array = "[" (scalar-value-list | empty) "]"

list = "(" (value-list | empty) ")"

group = "{" (setting-list | empty) "}"

empty =

Scalar values are defined below as regular expressions:

Boolean ([Tt][Rr][Uu][Ee])|([Ff][Aa][Ll][Ss][Ee])

string \"([^\"\\]|\\.)*\"

name [A-Za-z*][-A-Za-z0-9_*]*

integer [-+]?[0-9]+

integer64 [-+]?[0-9]+L(L)?

hex 0[Xx][0-9A-Fa-f]+

hex64 0[Xx][0-9A-Fa-f]+(L(L)?)?

float ([-+]?([0-9]*)?\.[0-9]*([eE][-+]?[0-9]+)?)|([-+]([0-9]+)(\.[0-

9]*)?[eE][-+]?[0-9]+)

PVTM User’s Guide Page | 47 Copyright © 2016
Pontus Networks

Configuration Values

The following sections describe the configuration values in the pvtm.cfg file in alphabetical order:

pvtm_agent_aggressive_run_solution_if_score_too_high

This Boolean option controls whether the agent re-requests a new simulation if the score from the

previous simulation results was higher than the latest score in the system. WARNING: if users set

this value to true, too much re-pinning, which can impact the application performance, can occur.

The default value for this option is false.

pvtm_agent_app_config_override

This 'list of groups' option enables PVTM Agent to override application characteristics, such as the

set of cores where the app is allowed to run, or any other attributes in the SET_APPS message.

As listed in the BNF Grammar, the list uses parenthesis with one or more groups of settings. Each

of the internal groups is delimited by curly braces {}, and is comma-delimited. The internal

groups show different rules to override application characteristics, and have the following options:

 regex – this string option has a regular expression that is used to find application names

for the current override rule. Any matching apps will have the other attributes overridden.

Note that the matching starts at the first internal group, and continues downwards. The

first match found stops the traversal.

 overrideStr – this string option has embedded JSON-like objects that are appended to the

normal matching SET_APPS application descriptions sent to PVTM Simulator. It must be

present, even if it is empty.

 threadAllowedCores - this is an optional value-list option of value-list options (a 2-

dimentional array) of strings with regex patterns and strings with allowed cores for any

threads that match that pattern (e.g. threadAllowedCores=(("thread_2","[-

1]"),("java","[0,2]"));). The value of the strings with the cores must always have square

brackets, and one or more integers. To specify that a thread should run on all cores, a

special value of "[-1]" may be used.

The following example shows three rules to override application behaviour. The first rule overrides

any applications that match the pattern app2 to be allowed only to run on cores 1 and 3. The

second rule overrides any apps that match the pattern app1 to only be allowed to run on cores 1,

2 and 3 (note that PVTM does a conservative match, quitting after the first match is

found, so an app that matched both patterns would end up only in cores 1 and 3). Lastly,

the third rule overrides any applications that match the pattern java, allowing any threads that

match the thread name thread_2 to run on any cores (the -1 means all cores), and any threads

named java to only run on cores 0 or 2

pvtm_agent_app_config_override=

(

 {regex="app2"; overrideStr="'allowedCores':'[1,3]'";},

 {regex="app1"; overrideStr="'allowedCores':'[1,2,3]'";},

 {

 regex="java";

 threadAllowedCores=(("thread_2","[-1]"),("java","[0,2]"));

 overrideStr = " ";

 }

PVTM User’s Guide Page | 48 Copyright © 2016
Pontus Networks

);

pvtm_agent_app_link_file_delta_threshold

This integer option enables PVTM Agent to filter out inter-thread communications that use files or

named pipes that are not sending enough data. If this option is set to a value of 0, any files or

pipes that have more than zero bytes written or read are included in the SET_APPLINKS message.

If it is set to 1000, then only files or pipes that had more than 1000 bytes since the last polling

interval are added to the SET_APPLINKS message. If this option is set to -1, then all pipe and file

connections (whether or not data has been sent) are added to the SET_APPLINKS message.

The default value for this option is pvtm_agent_app_link_file_delta_threshold = 0;

pvtm_agent_app_link_file_delta_threshold_bypass_pre_filter

This Boolean option enables PVTM Agent to bypass the checks for the files and pipes threshold set

in pvtm_agent_app_link_file_delta_threshold. If set to true, then no threshold checks are

performed.

The default value for this option is pvtm_agent_app_link_file_delta_threshold_bypass_pre_filter

=false

pvtm_agent_app_link_inclusive_regex_filter

This string option enables PVTM Agent to filter which app link strings are included in the

SET_APPLINKS message sent to the PVTM Simulator. Only entries that match this option are

included. The default value is to match all entries.

pvtm_agent_app_link_inet6_socket_delta_threshold

This integer option enables PVTM Agent to filter out inter-thread communications that use IPV6

sockets that are not sending enough data. If this option is set to a value of 0, any IPV6 socket

that has more than zero bytes will be included in the SET_APPLINKS message. If it is set to 1000,

then only IPV6 sockets that had more than 1000 bytes since the last polling interval will be added

to the SET_APPLINKS message. If this option is set to -1, then all IPV6 socket connections

(whether or not data has been sent) are added to the SET_APPLINKS message.

The default value for this option is pvtm_agent_app_link_inet6_socket_delta_threshold = 0;

pvtm_agent_app_link_inet6_socket_delta_threshold_bypas s_pre_filter

This Boolean option enables PVTM Agent to bypass the checks for the inet6 threshold set in

pvtm_agent_app_link_inet6_socket_delta_threshold. If set to true, then no threshold checks are

performed.

The default value for this option is

pvtm_agent_app_link_inet_socket_delta_threshold_bypass_pre_filter =false

pvtm_agent_app_link_inet_socket_delta_threshold

This integer option enables PVTM Agent to filter out inter-thread communications that use IPV4

sockets that are not sending enough data. If this option is set to a value of 0, any IPV4 socket

that has more than zero bytes will be included in the SET_APPLINKS message. If it is set to 1000,

PVTM User’s Guide Page | 49 Copyright © 2016
Pontus Networks

then only IPV4 sockets that had more than 1000 bytes since the last polling interval will be added

to the SET_APPLINKS message. If this option is set to -1, then all IPV4 socket connections

(whether or not data has been sent) are added to the SET_APPLINKS message.

The default value for this option is pvtm_agent_app_link_inet_socket_delta_threshold = 0;

pvtm_agent_app_link_inet_socket_delta_threshold_bypass_pre_filter

This Boolean option enables PVTM Agent to bypass the checks for the inet threshold set in

pvtm_agent_app_link_inet_socket_delta_threshold. If set to true, then no threshold checks are

performed.

The default value for this option is

pvtm_agent_app_link_inet_socket_delta_threshold_bypass_pre_filter =false

pvtm_agent_app_link_lock_delta_threshold

This integer option enables PVTM Agent to filter out inter-thread communications that use futex

locks that are not sending enough data. If this option is set to a value of 0, any futex locks that

have been activated at least once since the last polling interval will be included in the

SET_APPLINKS message. If it is set to 1000, then only futex locks that had more than 1000 locks

and unlocks since the last polling interval will be added to the SET_APPLINKS message. If this

option is set to -1, then futex locks (whether or locking/unlocking have been done) are added to

the SET_APPLINKS message.

The default value for this option is pvtm_agent_app_link_lock_delta_threshold = 0;

pvtm_agent_app_link_lock_delta_threshold_bypass_pre_filter

This Boolean option enables PVTM Agent to bypass the checks for the locks threshold set in

pvtm_agent_app_link_lock_delta_threshold. If set to true, then no threshold checks are

performed.

The default value for this option is

pvtm_agent_app_link_lock_delta_threshold_bypass_pre_filterr=false

pvtm_agent_app_link_override

This "list of groups" option enables PVTM Agent to create artificial inter-thread application links

that will appear as 'unknown' protocols in the SET_APPLINKS message.

As listed in the BNF Grammar, the list uses parenthesis with one or more groups of settings. Each

of the internal groups is delimited by curly braces {}, and is comma-delimited. The internal

groups show different rules to add new inter-thread application links, and have the following

options:

 (source/dest)AppRegex – this string option is a regular expression used to match one or

more applications to act as the (source/dest) of the connection

 (source/dest)AppRegexIndex – this integer option is used to determine which of the regex

matches is used; when set to -1, all the regex matches are used.

 (source/dest)ThreadIndex – this integer option is one of the two mechanisms used to

determine which thread within each matching application is used as the (source/dest) of

the connection. If this is not present, the second mechanism (regex on the thread name)

is used to identify the threads.

PVTM User’s Guide Page | 50 Copyright © 2016
Pontus Networks

 (source/dest)ThreadNameRegex – this string option is a regular expression used to match

one or more thread names as the (source/dest) thread of the connection

 (source/dest)ThreadNameRegexIndex – this integer option is used to determine which of

the regex matches is used; when set to -1, all the regex matches are used, resulting in

multiple connections.

Here is a brief example of two rules that create a link between app2(t2), and app1(t1), and a link

between the first and second threads in app1:

pvtm_agent_app_link_override =

(

{ sourceAppRegex="app2"; sourceAppRegexIndex=0; sourceThreadNameRegex="t2";

sourceThreadNameRegexIndex=0; destAppRegex="app1"; destAppRegexIndex=0;

destThreadNameRegex="t1"; destThreadNameRegexIndex=0; },

{ sourceAppRegex="app1"; sourceAppRegexIndex=0; sourceThreadIndex=0;

destAppRegex="app1"; destAppRegexIndex=0; destThreadIndex=1; }

);

pvtm_agent_app_link_pair_delta_pcnt_threshold

This integer option causes PVTM Agent to only report a link between threads if the difference

between the send and receive stats is less than this amount. The default value is 1000, which

means 1000%. If a few threads are reporting a lock to a mutex, that lock is only reported as

being a link if the number of locks/unlocks is within 1000% of the highest lock number reported.

pvtm_agent_app_link_poll_with_thread_info

This Boolean option controls when PVTM Agent polls the application link information from the

applications being monitored. By default, PVTM Agent polls the application link information at the

same frequency as the pvtm_agent_timer_poll_proc_interval_ms timer. If this option is set to

true, PVTM Agent polls the application link information at the same frequency as the

pvtm_agent_timer_poll_thread_interval_ms timer. The default setting is coarser, which means

that fewer changes in the inter-thread patterns will occur; however, that also introduces a larger

lag between a change in thread patterns and the reaction to them by re -pinning the process.

Setting this option to true will typically cause more volatility in the PVTM scores.

The default value for this option is pvtm_agent_app_link_poll_with_thread_info = false;

pvtm_agent_app_link_unix_socket_delta_threshold

This integer option enables PVTM Agent to filter out inter-thread communications that use Unix

domain sockets that are not sending enough data. If this option is set to a value of 0, any Unix

domain socket that has more than zero bytes will be included in the SET_APPLINKS message. If it

is set to 1000, then only Unix domain sockets that had more than 1000 bytes since the last polling

interval will be added to the SET_APPLINKS message. If this option is set to -1, then all Unix

domain socket connections (whether or not data has been sent) are added to the SET_APPLINKS

message.

PVTM User’s Guide Page | 51 Copyright © 2016
Pontus Networks

The default value for this option is pvtm_agent_app_link_unix_socket_delta_threshold = 0;

pvtm_agent_app_link_unix_socket_delta_threshold_bypass_pre_filter

This Boolean option enables PVTM Agent to bypass the checks for the Unix domain sockets

threshold set in pvtm_agent_app_link_unix_socket_delta_threshold. If set to true, then no

threshold checks are performed.

The default value for this option is

pvtm_agent_app_link_unix_socket_delta_threshold_bypass_pre_filter=false

pvtm_agent_app_link_use_preload

This Boolean option controls whether or not PVTM Agent should poll a shared memory area used

by PVTM to keep counters indicating how many times each thread has accessed a select subset

system calls.

On Linux, the method currently used to gather this information is to set the LD_PRELOAD

environment variable to the following value before starting each process that needs to be profiled:

export LD_PRELOAD=<INSTALL_PATH>/linux/'$LIB'/libpvtm-agent-preload.so

(replacing <INSTALL_PATH> with the installation path up to the version number) for example:

export LD_PRELOAD=/opt/pontus-vision/4.7.0/linux/'$LIB'/libpvtm-agent-

preload.so

Note that the '$LIB' should be kept as it is with the single quotes, as the Linux loader will

dynamically replace it with either lib or lib64 depending on whether the application being run is 32

or 64 bits.

On Windows, PVTM agent will automatically gather this information from the applications that

match the pvtm_agent_regex_pattern by setting up a high-performance debugging session. As

such, the applications being monitored must run by a user that has either debugging privileges

enabled, or full admin rights.

The default value for this option is true on Linux, and false on Windows.

pvtm_agent_app_link_use_preload_linux_inject

This Boolean option controls whether or not PVTM Agent on Linux will attempt to profile remote

applications without using LD_PRELOAD. The default value is false. Users that want to try this

new experimental behaviour must also set the pvtm_agent_app_link_use_preload option to true.

Note that applications should NOT use both LD_PRELOAD and this method simultaneously.

pvtm_agent_app_thread_perf_counter_events_csv

This string option controls whether PVTM Agent starts capturing performance counters kept by the

Linux Kernel (2.6.36+). If this option is set to a comma-separated-value (csv) string, it causes

the PVTM Agent to add two extra fields in the SET_APPS message sent to PVTM Simulator

(pvtmPerfCounterVals, and pvtmPerfCounterEventsCsv). The following example shows the

PVTM User’s Guide Page | 52 Copyright © 2016
Pontus Networks

number of Level 1 data cache misses, Last Level Cache (LLC) -- typically level 3 -- data cache

misses, and data Translate lookaside buffer (TLB) misses:

pvtm_agent_app_thread_perf_counter_events_csv="L1-dcache-load-misses,L1-

dcache-store-misses,LLC-load-misses,LLC-store-misses,dTLB-load-misses,dTLB-

store-misses"

This option is currently only available on Linux, and the values are only used in "The Data Analysis

Preview Area".

The default value (if left unset) is to disable this feature. WARNING: setting this to an empty

string will not disable this feature; to disable this, simply leave this option commented out.

pvtm_agent_assume_all_threads_talk

This Boolean option controls whether PVTM Agent tells PVTM Simulator to assume that all the

threads within an application talk to each other. Note that all platforms now have mechanisms to

determine the inter-thread communication patterns, so this option should be switched off unless it

is impossible to employ the supported discovery mechanism for inter-thread communication.

For legacy reasons, the default is true on all platforms.

pvtm_agent_chrt_rr_matching_processes

This Boolean option controls whether or not PVTM Agent should change the scheduler priority

mechanism of all matching threads to the value set by the option

pvtm_agent_set_chrt_rr_priority. The name chrt is a linux construct (change real-time) that

enables the priority of the threads to be increased in real-time. The same setting also works for

windows. PVTM increases the priority of any matching thread if running as root or administrator.

The default value for this option is pvtm_agent_chrt_rr_matching_processes=true;

WARNING: you must run pvtm-agent as root for this to work. If you do not run the agent as root,

this option should be switched off; otherwise, error messages will occur.

pvtm_agent_context_switch_cost

This integer option controls the cost of context switch send to the simulator. If this number is too

low, the model may place too many threads on the same core. The context switch cost is the

multiplier that the simulator uses to penalize the score for context switches. The formula used by

the simulator is the following:

Pct =
ln(𝑛𝑢𝑚𝑇ℎ𝑟𝑒𝑎𝑑𝑠) ∗ 𝐶𝑃𝑈𝑈𝑡𝑖𝑙 ∗ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑆𝑤𝑖𝑡𝑐ℎ𝐶𝑜𝑠𝑡

𝐶𝑝𝑢𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

Where:

numThreads is the num of threads currently scheduled in the core,

CPUUtil is the total CPU percentage of the threads currently scheduled in the core,

or 0.01 if the total util is zero)

ContextSwitchCost is the value set in the SET_COMPUTER message

PVTM User’s Guide Page | 53 Copyright © 2016
Pontus Networks

CPUScalingFactor is either 1, or the value set in the RUN_SOLUTION_CACHED request

message

The default value is pvtm_agent_context_switch_cost=100;

pvtm_agent_cpu_info_json

This string option has a JSON-like structure that forces PVTM Agent to use an artificial hardware

configuration. The format of this value is the same as the RUN_SOLUTION_CACHED request

message.

Here are some examples:

//pvtm_agent_cpu_info_json="{ 'type': 'pontusdraw2d.IBM_3750_m4',

'properties': { 'id': 'zeus', 'contextSwitchCost': '40', 'junkCores':

'[]', 'physicalCpuList' : '[0,0,0,0,0,0,0,0]', 'latencyMatrix':

'[[14,20,19,20,10,20,19,20], [20,14,20,19,20,10,20,19],

[19,20,14,20,19,20,10,20], [20,19,20,14,20,19,20,10],

[10,20,19,20,14,20,19,20], [20,10,20,19,20,14,20,19],

[19,20,10,20,19,20,14,20], [20,19,20,10,20,19,20,14]]' } } "

// pvtm_agent_cpu_info_json="{ 'type': 'pontusdraw2d.IBM_3750_m4',

'properties': { 'id': 'zeus', 'contextSwitchCost': '40', 'junkCores':

'[]', 'physicalCpuList' : '[0,0,0,0,0,0,0,0]', 'latencyMatrix':

'[[40,20,19,20,10,20,19,20], [20,40,20,19,20,10,20,19],

[19,20,40,20,19,20,10,20], [20,19,20,40,20,19,20,10],

[10,20,19,20,40,20,19,20], [20,10,20,19,20,40,20,19],

[19,20,10,20,19,20,40,20], [20,19,20,10,20,19,20,40]]' } } "

pvtm_agent_cpu_max_total_pcnt_auto_passive

This integer option controls whether or not the agent becomes passive after the total CPU

percentage across all the threads that match the pvtm_agent_regex_pattern in the whole server

goes beyond this value (post scaling).

 The default value of pvtm_agent_cpu_max_total_pcnt_auto_passive =-1 disables this option.

pvtm_agent_cpu_scaling_factor

This numeric option enables PVTM Agent to get sub-one % cpu utilizations. For performance

reasons, the agent deals with integers when sending the data to the simulator. A scaling factor of

10 sets the minimum CPU utilization to 0.1% a scaling factor of 100, 0.01. The default of 1 sets

the minimum CPU utilization to 1%.

WARNING: if using this option, and hand-entering IRQ information using the option

pvtm_agent_irq_files, please remember to multiply the threadPcnt number by the new scaling

factor!

The default value is pvtm_agent_cpu_scaling_factor=1;

PVTM User’s Guide Page | 54 Copyright © 2016
Pontus Networks

pvtm_agent_cpu_single_core_pcnt_auto_passive

This integer option controls whether or not the agent becomes passive after the CPU percentage in

any core exceeds this value (from 0 to 100) post scaling.

The default value of pvtm_agent_cpu_single_core_pcnt_auto_passive =-1 disables this option.

pvtm_agent_cpu_state_linux

pvtm_agent_cpu_state_linux_percentage_threshold

This integer option controls the cpu state of the server. When set to zero, the CPUs will never

sleep; when set to -1, the system defaults to the current behaviour, and this becomes a no-op.

When set to -2, the system will attempt to look at the available turbo frequencies, and select an

appropriate CPU state. If various turbo frequencies are available in the system, sometimes setting

the CPU state to 0 will actually reduce the maximum possible turbo frequency. As an example, in

a Sandy Bridge EP system with an 8-core E5 2680 CPU, the following turbo frequencies are

available:

3100 MHz max turbo 8 active cores

3100 MHz max turbo 7 active cores

3200 MHz max turbo 6 active cores

3200 MHz max turbo 5 active cores

3200 MHz max turbo 4 active cores

3400 MHz max turbo 3 active cores

3500 MHz max turbo 2 active cores

3500 MHz max turbo 1 active cores

In the example above, if only one or two cores are active, setting the CPU state to 0 will cap the

maximum frequency available to 3.1GHz, potentially leading to over 10% reduction in max

frequency of 3.5GHz for 1 or two active cores. When the pvtm_agent_cpu_state_linux is set to -2,

PVTM Agent will check the number of cores that are active above the

pvtm_agent_cpu_state_linux_percentage_threshold utilization, and then only set the CPU state to

zero if there are either zero busy cores, or too many busy cores. With zero busy cores, the apps

are usually not polling for data, and thus can really benefit from having the extra boost that a CPU

State of 0 will give when they are awakened by new data. If there are more than 7 busy cores in

the example above, the max CPU speed is the same as setting all cores to a CPU state of 0

anyway. To avoid flip-flopping between CPU states, PVTM Agent keeps the moving average of the

last pvtm_agent_score_moving_average_period CPU percentages for each of the cores.

As the name implies, these options only impact Linux servers. These are a great options for

reducing latency, but they can increase the power consumption of inactive servers.

The default values are the following:

pvtm_agent_cpu_state_linux = -2,

pvtm_agent_cpu_state_linux_percentage_threshold=

MaxTurboMHzcore 1 - MaxTurboMHzcore n

MaxTurboMHzcore n

*100

where:

MaxTurboMHzcore 1 is the maximum turbo frequency for 1 active core,

MaxTurboMHzcore n is the maximum turbo frequency for all active cores

PVTM User’s Guide Page | 55 Copyright © 2016
Pontus Networks

If setting the pvtm_agent_cpu_state_linux_percentage_threshold option by hand, use whole

numbers from 0 to 100 (note that this value is not affected by the option

pvtm_agent_cpu_scaling_factor). The pvtm_agent_cpu_state_linux_percentage_threshold option

has no impact unless pvtm_agent_cpu_state_linux is set to -2.

pvtm_agent_delta_cpu_util_threshold

This integer option controls the threshold in CPU utilization that will trigger a re -score. PVTM

Agent sends score requests whenever the CPU utilization of any of the threads changes by

pvtm_agent_delta_cpu_util_threshold percentage, or whenever a new thread starts, or PVTM

Agent can also be configured to force a score request to be sent periodically regardless of any

changes in the environment. The pvtm_agent_delta_cpu_util_threshold option is always an

integer greater than or equal to zero. Setting the pvtm_agent_delta_cpu_util_threshold option to

5 means scores will be sent whenever the difference in CPU utilization on a thread was more than

5%.

The default value is pvtm_agent_delta_cpu_util_threshold=5;

pvtm_agent_delta_score_threshold_percentage

This integer option controls the difference in the moving average to trigger a new thread pinning

strategy; note that if you set this to -1, PVTM Agent runs in passive mode, only capturing data,

but never applying it.

The default value is pvtm_agent_delta_score_threshold_percentage=10; to make PVTM Agent run

in passive mode, it can be set to pvtm_agent_delta_score_threshold_percentage=-1;

pvtm_agent_delta_score_threshold_positive_trigger_only

This Boolean option configures PVTM Agent to only send re-pinning requests if the difference

between the current score and the moving average is a positive value (e.g. if the score increased).

If set to false, both positive and negative changes will trigger a re-pinning strategy.

The default value is pvtm_agent_delta_score_threshold_positive_trigger_only=true;

pvtm_agent_delta_time_to_delete_old_files_ms

This integer option controls how long (in milliseconds) PVTM Agent waits to delete a shared

memory area that has not been accessed recently. A shared memory area is only deleted if it has

not been updated for longer than this value.

The default value is pvtm_agent_delta_time_to_delete_old_files_ms=30000

PVTM User’s Guide Page | 56 Copyright © 2016
Pontus Networks

pvtm_agent_dynamic_config_file_name

This string option sets the name of the dynamic config file polled by PVTM Agent. PVTM Agent can

poll a dynamic configuration file periodically (every pvtm_agent_timer_poll_cfg_file_interval_ms)

to look for any dynamic options. This is a mechanism to change rules of artificial inter -thread

connections without stopping and starting PVTM Agent. This option sets the full path to the file

name being polled. If unset, PVTM Agent will never poll the dynamic configuration file.

The default value is for pvtm_agent_dynamic_config_file_name to be unset.

pvtm_agent_fake_zero_percentage_threads_last_core

This Boolean option instructs PVTM Agent to fake the last core where a 0% thread was running

rather than use the value reported by the OS. Threads do not respond to thread pinning requests

until they execute their next instruction, so 0% threads are often reported as running in a different

core to the one they were pinned, because that's the last core where they ran. This can cause

unnecessary re-pinning requests to be made.

The default value for this option is true;

pvtm_agent_force_run_solution_request_if_new_threads_start

This Boolean option instructs PVTM Agent to send an unsolicited RUN_SOLUTION_CACHED request

whenever a new thread appears.

The default value for this option is the following:

pvtm_agent_force_run_solution_request_if_new_threads_start = false;

pvtm_agent_ignore_inactive_irqs

This Boolean option instructs PVTM Agent to ignore inactive IRQs. This option currently only has

an impact on Linux. It forces PVTM's IRQ auto-discovery mechanism to report only active

interrupts.

The default value for this option is pvtm_agent_ignore_inactive_irqs=true;

pvtm_agent_ignore_zero_percentage_threads

This Boolean option enables PVTM Agent to ignore any threads that only use zero % CPU. This

may be useful in situations where there is a very large number of threads; however, the down-side

is that since the zeor percent threads will not belong to the model, they will not be pinned

properly, and may interfere, when they do wake up, with the high-performance threads.

The default value is pvtm_agent_ignore_zero_percentage_threads=false;

pvtm_agent_inflate_cpu_util_threshold

This integer option causes PVTM Agent to inflate the CPU utilization of threads that are running on

the same core and that are perhaps limited in their performance by each other. If the CPU

utilization of more than one thread is greater than or equal to the

PVTM User’s Guide Page | 57 Copyright © 2016
Pontus Networks

pvtm_agent_inflate_cpu_util_threshold, the first thread's CPU utilization is reported normally;

however, the next thread's CPU utilization is inflated to add up to 101%. This immediately causes

PVTM Agent to send a STOP_SOLUTION request, which forces a new thread simulation to be

calculated. This option only inflates the CPU utilization when more than one thread running on a

single core.

The default value for this option is pvtm_agent_inflate_cpu_util_threshold= -1, which disables this

feature.

pvtm_agent_invalid_solution_counter_threshold

This integer option controls the number of invalid solutions that PVTM Agent receives in a row

before it gives up requesting a new pinning strategy.

The default value for this option is pvtm_agent_invalid_solution_counter_threshold=25.

pvtm_agent_irq_auto_filter_regex_pattern

This string option allows PVTM Agent to automatically discover IRQs on Linux, and use them in the

model. Any interrupts in the /proc/interrupts file that match this value are used. A good way to

test values for this option this is to use the PVTM Agent in 'irq-helper' mode as described in the

Command Line section. This option only has an impact Linux platforms.

The default value is an empty string, which disables this feature.

pvtm_agent_irq_auto_force_allowed_cores

This string option has a JSON-style array of integers that overrides the allowed cores on where the

automatically discovered interrupts on Linux can run. This is useful to anchor the interrupts in a

subset of cores of the total number of cores in the whole CPU where the device is located. If this

option is not set, PVTM Agent will automatically allow the IRQs to run on any of the cores of the

CPU where the device is located (if it can locate the device). If the device cannot be located, the

interrupts are allowed to run in the whole server.

The default value is an empty string, which disables this feature.

pvtm_agent_irq_auto_max_total_cpu_util

This integer option controls the total cpu utilization of all matching IRQs; this number will be

divided evenly across all the matches, and defaults to 0. If you would like to have each IRQ use

100% CPU, and you have 3 matching IRQs, set this to 300. WARNING: this number is multiplied

by the pvtm_agent_cpu_scaling_factor automatically by the agent so if the

pvtm_agent_cpu_scaling_factor were 100 in the example above, there 's NO NEED to set this value

to 30000

The default value is pvtm_agent_irq_auto_max_total_cpu_util=0;

pvtm_agent_irq_files

This "list of groups" option enables PVTM Agent to inject IRQs artificially in the model. In

Windows, this is currently the only way of incorporating IRQs into the system. The IRQs appear as

threads with negative PIDs, with connections to threads that have either a socket connection that

matches the IRQ's netmask, or an open file that matches the IRQ's fie regex.

 As listed in the BNF Grammar, the list uses parenthesis with one or more groups of settings. Each

of the internal groups is delimited by curly braces {}, and is comma-delimited. The internal

PVTM User’s Guide Page | 58 Copyright © 2016
Pontus Networks

groups show information about the interrupts artificially added to the model, and have the

following options:

 irqNum –this integer option has the interrupt number used by the model to identify this

IRQ.

 allowedCores – this string option has the list of cores where the model is allowed to place

the interrupt. WARNING: this option does not use the taskset-style of lists; the cores have

to be explicitly set here; also, do not forget that this is a string option, which requires

double quotes.

 currCore – this integer option has the current core where the IRQ is running. This should

match the same value as the allowed Cores setting.

 threadPcnts – this string option has an artificial cpu % that is used by the model when

calculating the PVTM scores.

 regex – this optional string option has a regular expression that is used by PVTM Agent to

create connections to I/O threads accessing matching files

 cidrs – this optional string list option has a parenthesis-delimited list of IPv4 address

masks in CIDR notation. The CIDR has two parts delimited by a forward slash (/). The

first part has an IP address, and the second part the number of ones used in a binary

mask that is 'binarily anded' with the IP address. The result is an IP address mask that

can be used to form a routing table to match IP addresses.

As an example, the CIDR 192.168.51.0/24 matches any IP addresses that start with

192.168.51.x, whereas 192.168.51.0/16 would match any IP addresses starting with

192.168.x.x. The 192.168.51.0 part of the CIDR is the following in binary:

192 168 51 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

When anded with the /24 1's bitmask, we have the following:

192 168 51 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

192 168 51 0

When anded with the /16 1's bitmask, we have the following:
192 168 51 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

192 168 0 0

Here's a quick example:

pvtm_agent_irq_files= (

{irqNum = 16; allowedCores="[0,2,4,6]"; currCore=0; threadPcnts="[100]";

regex="/tmp";},

{irqNum = 15; allowedCores="[0,2]"; currCore=2; threadPcnts="[50]";

regex="/opt";},

{irqNum=19; allowedCores="[0,1]"; cidrs=("0.0.0.0/0", "169.254.0.0/16",

"192.168.51.0/24"); threadPcnts="[0]"; currCore=0;}

);

PVTM User’s Guide Page | 59 Copyright © 2016
Pontus Networks

In the example above, PVTM Agent will artificially create 3 IRQs numbered 16, 15, and 19. These

IRQs will have the following behaviour:

1) IRQ 16 – connect to any threads reading or writing to a file that has the pattern '/tmp;

IRQ 16 will be allowed to run on cores 0,2,4,6, will be reported as currently running on

core 0, and using 100% CPU.

2) IRQ 15 – connect to any threads reading or writing to a file that has the pattern '/opt; IRQ

15 will be allowed to run on cores 0,2,4,6, will be reported as currently running on core 0,

and using 100% CPU.

3) IRQ 19 – connect to any external IP addresses that match the following criteria:

 don't match any other NICs (the 0.0.0.0/0 means this is a default

gateway),

 or any IP addresses that start with 192.168.51.x,

 or any IP addresses that start with 169.254.x.x.

IRQ 19 will be allowed to run on cores 0 and 1, and will be reported as using 0% CPU and

running on core 0.

pvtm_agent_irq_route_table_symbols_to_cut

This string option helps PVTM Agent filter out unnecessary entries of the routing table on Linux

(this is currently ignored in other platforms). When servers have VLAN tagging on, this can cause

issues with the matching. VLAN tags seem to appear as strings with the following format in the

routing table: <interface>.<vlan tag>. With the default setting, PVTM Agent cuts out any dots

('.') from the name, starting from the last entry in the table, so entries like the ones below will be

saved as just eth0 instead of eth0.102, or eth0.104:

cat / pr oc /ne t/ ro ut e

Ifa ce D est in at io n G at ew ay Fl ags R ef Cn t Us e Met ri c M as k M TU W ind ow IR TT

eth 0. 10 2 60 59 E10 A 00 00 00 00 0 00 1 0 0 0 E0 FF FF FF 0 0 0

eth 4 4 059 E1 0A 0 00 00 00 0 00 01 0 0 0 E 0F FFF FF 0 0 0

eth 5 4 059 E1 0A 0 00 00 00 0 00 01 0 0 0 E 0F FFF FF 0 0 0

eth 0. 10 4 60 79 E10 A 00 00 00 00 0 00 1 0 0 0 E0 FF FF FF 0 0 0

eth 0. 10 2 00 C3 19A C 61 59 E1 0A 0 00 3 0 0 0 00 FF FF FF 0 0 0

eth 0. 10 4 00 C4 19A C 61 79 E1 0A 0 00 3 0 0 0 00 FF FF FF 0 0 0

eth 4 0 000 FE A9 0 00 00 00 0 00 01 0 0 100 6 0 00 0FF FF 0 0 0

eth 5 0 000 FE A9 0 00 00 00 0 00 01 0 0 100 7 0 00 0FF FF 0 0 0

eth 0. 10 2 00 00 FEA 9 00 00 00 00 0 00 1 0 0 1 00 8 00 00 FF FF 0 0 0

eth 0. 10 4 00 00 FEA 9 00 00 00 00 0 00 1 0 0 1 00 9 00 00 FF FF 0 0 0

eth 0. 10 4 00 00 000 0 61 79 E1 0A 0 00 3 0 0 0 00 00 00 00 0 0 0

pvtm_agent_junk_cores

pvtm_agent_junk_cores_json_array

This string option sets the list of junk cores in the machine; if running as root, you can also set the

option pvtm_agent_move_non_match_pids_to_junk_cores to true to move the non-matching apps

to the junk cores. Note that as of version 4.5.0.64, the alternative option name

pvtm_agent_junk_cores may also be used; however, if both are present in the configuration file,

only the value in pvtm_agent_junk_cores_json_array will be used. Both options also now allow for

mixed list notation (e.g. 1,3,4-7). Please note that this is a string value with a JSON Array

inside, so don't forget the double quotes.

PVTM User’s Guide Page | 60 Copyright © 2016
Pontus Networks

Junk cores are cores dedicated to non-performance-sensitive applications. Background processes,

including some Kernel threads run on junk cores to avoid interference with performance sensitive

applications. PVTM Agent can move all non-matching processes, including itself to a list of Junk

Cores. It is usually recommended that more than one junk core is used in case an application

running in the junk cores uses 100% CPU utilization and renders the server inaccessible.

The default value is pvtm_agent_junk_cores_json_array="[]";

pvtm_agent_junk_cores_allow_threads

This Boolean option determines whether PVTM Agent allows the PVTM Simulator to place threads

in the junk cores. This is useful in environments where users need all the cores for the application

(e.g. grid environments), but still want to limit the interference caused by non-matching apps to

just a few cores. The default value for this option is false, which makes the PVTM Simulator ignore

the junk cores during simulations:

pvtm_agent_junk_cores_allow_threads = false;

pvtm_agent_junk_cores_sanity_check

This Boolean option determines whether PVTM Agent attempts to sanity check the value of the

pvtm_agent_junk_cores option. If this is set to true (default), PVTM Agent will look at the current

set of active CPUs and ensure that the junk cores all fall within the correct range.

The only time when it is worth switching this option to false is on older platforms, where PVTM

Agent may not correctly recognize all the cores in the system.

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_mins_json_array

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_maxs_json_array

These two string options allow users to bias the weights of inter-thread connections. They contain

the min and max values for the normalized weights of the following protocols:

 un - unknown protocol – this is typically a result of an artificially inserted link using the

pvtm_agent_app_link_override option

 i4 - ipv4 sockets

 i6 - ipv6 sockets

 ld - local domain sockets

 pf - pipes and files

 lk - locks

 sm - shared memory

These arrays will spread the actual values for the protocols (the value in parenthesis of how many

unlocks for locks, or bytes were sent on sockets) between these artificial min and max values. The

default values below will make all the unknown protocols with a weight of 1, all the ipv4,v6, and

local domain sockets spread between 20 and 30, all the pipes and files between 1 and 5, all the

locks at 1, and all the shared memory areas at 10. These will effectively bias the model towards

favouring socket traffic over locks, pipes and files, and shared memory:

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_mins_json_array="[1,20,20,20,1,1,10]";

PVTM User’s Guide Page | 61 Copyright © 2016
Pontus Networks

pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_maxs_json_array="[1,30,30,30,5,1,10]";

pvtm_agent_lock_stat_countdown_to_stop_monitoring

This integer option controls how often the PVTM inter-thread discovery mechanism polls for inter-

thread locks. When PVTM Agent profiles locks between threads, it has to be as unobtrusive as

possible. To minimize the impact on the apps, PVTM Agents will just profile the first 'Lock Stat

Countdown' calls every polling period. This option controls the number of unlock calls that are

tracked every pvtm_agent_timer_poll_thread_interval_ms.

The default value is pvtm_agent_lock_stat_countdown_to_stop_monitoring=100;

pvtm_agent_log_enable_syslog

This boolean option controls whether messages from PVTM Agent go into syslog on Linux. The

default value is true, which enables syslog messages.

pvtm_agent_log_level

This integer option has a bit mask for the log level; 255 is the full mask. As seen in the table

below, 1 is ERROR only , 2 is WARNINGS only , 3 is ERROR. and WARNINGS, 4 is NOTICE only, 7

is NOTICE, WARNINGS and ERROR messages:
SAMPLE

VALUE

Bit 0

(ERROR)

Bit 1

(WARNING)

Bit 2

(NOTICE)

Bit 3

(INFO)

Bit 4

(DEBUG)

Bit 5

(WebSockets

PARSER)

Bit 6

(WebSockets

HEADER)

Bit 7

(WebSockets

EXT)

255 1 1 1 1 1 1 1 1

7(Def) 1 1 1 0 0 0 0 0

15 1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0

10 0 0 0 0 1 0 0 0

The bits 4-7 will likely cause too much data to be logged. It's strongly advised not to do this in a

production environment.

The default value is pvtm_agent_log_level=7;

pvtm_agent_migrate_memory_when_pinning

This Boolean option determines whether PVTM Agent also moves the target application's memory

from one CPU to another. Note that this is a **VERY EXPENSIVE** call, and should only be used

in environments where there are not a lot of changes in the thread behaviour.

The default value is pvtm_agent_migrate_memory_when_pinning=false;

pvtm_agent_min_score_apply_pinning_threshold

This integer option controls the minimum score after which PVTM Agent app lies thread pinning

strategies. This is useful to prevent wrong pinning strategies to be implemented during quiet

periods of execution.

The default value is pvtm_agent_min_score_apply_pinning_threshold=0;

PVTM User’s Guide Page | 62 Copyright © 2016
Pontus Networks

pvtm_agent_move_non_match_pids_to_junk_cores

This Boolean option is used to control whether or not to move non-matching apps (not matched by

the pvtm_agent_regex_pattern) to either the cores listed in pvtm_agent_junk_cores, or optionally

only in the pvtm_agent_premium_junk_cores.

The default value is pvtm_agent_move_non_match_pids_to_junk_cores=false;

pvtm_agent_norm_apps_send_current_cores

This Boolean option controls whether PVTM Agent sends the current core location of each of the

threads when requesting a normalized simulation request. This is useful when the current pinning

position needs to be used as a reference to reduce the number of changes between the current

state and the target-simulated state.

The default value for this option is pvtm_agent_norm_apps_send_current_cores = true;

pvtm_agent_num_times_no_sigificant_changes_force_send

This integer option controls the number of times that no significant changes in CPU happen before

a new score request is forced. PVTM Agent sends GET_SCORE requests whenever the CPU

utilization of any of the threads changes by a configurable percentage threshold, whenever a new

thread starts, or PVTM Agent can also be configured to force a score request to be sent periodically

regardless of any changes in the environment by setting this option.

The default value for this option is pvtm_agent_num_times_no_sigificant_changes_force_send=5;

pvtm_agent_passive_pinning_mode

This Boolean option prevents PVTM Agent from applying the thread pinning strategies, but the

requests and thread pinning responses can still go to/from the thread manager if the

pvtm_agent_passive_pinning_mode_send_requests option is set to true. Change this option to

false to start applying the pinning strategies and sending requests.

The default value is pvtm_agent_passive_pinning_mode=true;

pvtm_agent_passive_pinning_mode_send_requests

This Boolean option controls whether PVTM Agent sends requests when the option

pvtm_agent_passive_pinning_mode is set to true. Setting this option to true whilst in passive

mode is useful for building a cache of system states and gauging how good is the model. If this

option is set to false and the pvtm_agent_passive_pinning_mode is set to true, then no run

requests go to the PVTM Simulator. This option is ignored when PVTM Agent is in active mode.

The default value is pvtm_agent_passive_pinning_mode_send_requests=false;

PVTM User’s Guide Page | 63 Copyright © 2016
Pontus Networks

pvtm_agent_premium_junk_cores

This string option sets an optional list of 'premium' junk cores that can be used for running other

apps (note that the pvtm_agent_premium_junk_cores option only has an impact if the

pvtm_agent_move_non_match_pids_to_junk_cores option is set to true).

WARNING: this option has to have a subset of cores to the ones on the

pvtm_agent_junk_cores_json_array. If the set of cores here is not a subset, then the pvtm-agent

will exit.

The Premium Junk Cores concept allows users to choose a sub-set of cores to run non-matching

applications within the junk cores. This is particularly useful if hyperthreading is turned on in a

server, and a user wants to logically disable them. This can be done by setting the list of junk

cores to all the hyper threads, plus a couple of real junk cores, and then setting the premium junk

cores to just the real junk cores. This would prevent the simulator from using any hyper threads

or the normal junk cores, and it would force PVTM Agent not to run any apps in the hyperthreads.

As seen above, this option was created to allow PVTM Agent to mask out hyperthreads in a server,

whilst still getting the freedom to constrain non-matching apps to a sub-set of the cores. This

option allows for mixed list notation (e.g. 1,3,4-7) with or without the square brackets; however,

the value must be a string, so please don't forget the double quotes

(e.g. pvtm_agent_premium_junk_cores="[1,3-7]";).

If this option is not set, the default value is the same as pvtm_agent_junk_cores_json_array.

pvtm_agent_process_conn_stats

This Boolean option determines whether PVTM Agent processes sockets, files and named pipe

statistics. When set to true, any such statistics found by PVTM Agent will be used. If set to false,

all the sockets, files, and named pipe statistics will be ignored.

The default value is pvtm_agent_process_conn_stats=true;

pvtm_agent_process_lock_stats

This Boolean option determines whether PVTM Agent processes futex lock statistics. When set to

true, any lock statistics found by PVTM Agent will be used. If set to false, all the lock statistics will

be ignored.

The default value is pvtm_agent_process_lock_stats=true;

pvtm_agent_regex_pattern

This string option is one of the most important in PVTM Agent, as it enables it to decide whi ch

applications are considered performance-sensitive, and which do not. The value of this option is a

regular expression that controls which apps PVTM Agent will match. The regex match is used in all

the GUI representations of the system, so care should be taken not to make it too generic. For

example, if a system has all java-based applications, using a regex of java is quite easy to

configure; however, it is not very descriptive. If, however, the description of the app appeared

somewhere in the command line such as –Dapp_description="app1", then it would make more

sense to use the word after app_description instead of java. This could be done using the

following regex: "(?=.*Dapp_description=.(\\w+))". The downside of this approach is that the

PVTM User’s Guide Page | 64 Copyright © 2016
Pontus Networks

regex is harder to create, and that PVTM Agent has to do additional work to match command line

arguments, so if there are large numbers of processes running, this can make an impact in

performance.

The default value is pvtm_agent_regex_pattern="java";

Here are some other examples:

//pvtm_agent_regex_pattern="(?=.*switched.(\\w+))";

//pvtm_agent_regex_pattern=".*";

//pvtm_agent_regex_pattern="(?=parallel (\\w+)|sequential (\\w+))";

//pvtm_agent_regex_pattern="net....";

//pvtm_agent_regex_pattern="EXCEL";

pvtm_agent_regex_pattern="java";

//pvtm_agent_regex_pattern="notepad$";

pvtm_agent_regex_pattern_results_delimiter

This string option controls whether PVTM Agent appends a string in between multiple regex results

in the same match. For example, if a process name "foobarfoo.x" is matched with the

pvtm_agent_regex_pattern "foo", and the pvtm_agent_regex_pattern_results_delimiter is set to

"__", then the result that will appear on the PVTM GUI is foo__foo.

The default value is pvtm_agent_regex_pattern_results_delimiter="";

pvtm_agent_run_config_apply_pinning_per_thread

This Boolean option controls whether the individual threads get pinned to just their own cores. If

setting this to true, each individual thread will be given a mask. This is useful in applications that

have long-lived thread pools.

The default value is pvtm_agent_run_config_apply_pinning_per_thread=true;

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions

This integer option allows PVTM Agent to set the affinity of individual threads not to only the latest

simulation result's core, but to a set of the last N results (N being the value of this option). Note

that only the last 16 results are currently stored. As example, let us use a hypothetical application

has two threads, and the following previous simulation results:

Time 0 – Thread 0 – core 0, Thread 1 – core 10

Time 1 – Thread 0 – core 5, Thread 1 – core 10

Time 2 – Thread 0 – core 7, Thread 1 – core 11

Time 3 – Thread 0 – core 10, Thread 1 – core 11

If the latest thread pinning strategy happened at Time 3, then here are some scenarios:

 If the value of this option is 1, then Thread 0 will be pinned to cores 7 and 10, and Thread

1 to core 11.

 If the value of this option is 3, then Thread 0 will be pinned to cores 0,5,7,10, and Thread

1 to cores 10 and 11.

 Lastly, if this option is set to 4 and above, then Thread 0 will be pinned to cores 0,5,7,10,

and Thread 1 to cores 10 and 11.

PVTM User’s Guide Page | 65 Copyright © 2016
Pontus Networks

This option helps improve thread pinning of environments with more active threads than cores; by

giving the scheduler a few options in busy environments, it allows the system to react to quick

changing environments.

The default value of zero does not attempt to do any merging.

The default value is the following:

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions=0

This only runs the last simulation results.

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions_cpu_thres
hold

This integer option controls the CPU percentage (multiplied by the cpu scaling factor), after which

no merging will occur. If this value is set to 50, and the scaling factor is 1, then any threads that

have more than 50% CPU percentage utilization will not have the last_n_solutions merged; n will

be forced to be 0.

The default value for this option is 0:

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions_cpu_threshold=0;

pvtm_agent_run_config_apply_pinning_whole_process

This Boolean option controls whether the whole app gets pinned to all the cores or just the

individual threads get pinned to just their own cores. If setting this to true, the whole process will

be given a mask. This is useful in applications that have dynamic thread pools that are short-

lived. Note that this should always set to true in Windows.

The default value is pvtm_agent_run_config_apply_pinning_whole_process=true;

pvtm_agent_run_solution_cache_app_thread_pcnt_only

This Boolean option enables PVTM Agent to use the thread percentages (rather than the whole

state of the applications) as a hash key for previous simulation results. This may lead to a higher

cache ratio at the risk of producing less accurate pinning strategies. .

The default value is pvtm_agent_run_solution_cache_app_thread_pcnt_only =false;

pvtm_agent_run_solution_cache_enabled

This Boolean option enables the caching capabilities in the PVTM Agent. Users are strongly

advised not to change this option to false, as it could lead to no matches of previous simulations

being found, and increased CPU Utilization in PVTM Simulator.

The default value is pvtm_agent_run_solution_cache_enabled=true;

PVTM User’s Guide Page | 66 Copyright © 2016
Pontus Networks

pvtm_agent_run_solution_cache_lru_table_size

This integer option controls the number of previous simulation results the agent will cache locally

in memory. Users are strongly advised not to set this value too low, as it could lead to no matches

of previous simulations being found, and increased CPU Utilization in PVTM Simulator.

The default value is pvtm_agent_run_solution_cache_lru_table_size=100;

pvtm_agent_run_solution_command

This string option controls the various different algorithm parameters to control the Simulator

when RUN_SOLUTION_CACHED request messages are sent. The values used here can be

experimented during off-line Simulations using the PVTM GUI. The value of option is a string with

a JSON-like object inside, including the following parameters:

 'inertiaCpuUtilThreshold' – a single-quoted string representing the CPU utilization where

the PVTM Simulator starts applying an inertia penalty. The inertia penalty penalizes

threads that have high CPU utilizations (above the intertiaCpuUtilThreshold) and that move

away from the existing position. If not set, the default value is 100, which means that no

threads will have inertia applied to them (as no threads can go over 100% CPU utilization).

This value ranges from 0 to 100.

 'inertiaMultiplier' – a single-quoted string representing the double floating point precision

values that PVTM Simulator multiplies by the inertia penalty. The inertia penalty penalizes

threads that have high CPU utilizations (above the intertiaCpuUtilThreshold) and tha t move

away from the existing position. If not set, the default value is 0, which means that no

threads will have inertia applied to them. This value should be a positive floating point

number. If this value is greater than 1.0, it exacerbates the impact of inertia (e.g. ensure

that high CPU threads never get moved). If this value is between 0 and 1, it can alleviate

the inertia penalty (e.g. give the model a bit more freedom when moving threads with

more than 1% CPU).

 cpuScalingFactor is a dividing factor used to obtain CPU utilizations that are less than one

percent. For efficiency reasons, the CPU utilization is always listed as an integer value. If

an application requires sub 1% CPU accuracy, then this scaling factor is used by PVTM

Agent to multiply the CPU counters by this value when calculating its percentages, so if the

cpuScalingFactor is 10, then a process using 0.5 % CPU will be reported as 5, whereas a

process using 100% CPU will be reported as 1000. The simulator then uses this scaling

factor to re-normalize the CPU utilization when the context switch penalties are calculated.

 'maximumSecondsSpend' – a single-quoted string representing the maximum number of

seconds the PVTM Simulator will spend running a simulation; the default value of 30

seconds should be more than enough for most environments, and if the system has a

relatively small number of solutions, this value can be set to 10 seconds or lower.

 'randomize' – single quoted string with a Boolean value representing whether or not PVTM

Simulator should randomize the initial thread pinning assignment. This can have a positive

impact in the quality of the results in some systems, but may also have a negative impact

in others.

 'clearLast'- single quoted string with a Boolean value representing whether or not PVTM

Simulator should clear the current thread execution layout, and use one of the

'constructionHeuristicType' algorithms instead. Setting this to false will cause the model to

use the current thread execution layout as a starting point. If absent, this defaults to

false, and the current thread execution layout is used as a starting point; this usually

causes the least number of thread changes, but may lead to local optima.

PVTM User’s Guide Page | 67 Copyright © 2016
Pontus Networks

 'constructionHeuristicType' single quoted string with an algorithm used by the simulator to

place the initial set of threads if the 'clearLast' value is set to 'true'. Here are the possible

values:

o FIRST_FIT – the PVTM Simulator uses the first valid (i.e. that only uses valid

cores) first thread execution layout it can find in increasing order of complexity,

placing lower percentage threads first, then threads with fewer neighbour

connections and then continuing from there regardless of scores.

o FIRST_FIT_DECREASING – the same as first fit, but in reverse order.

o WEAKEST_FIT – The same as FIRST FIT, but keeping scores, and using the

worst scores first.

o WEAKEST_FIT_DECREASING – The same as FIRST_FIT_DECREASING, but keeping

scores, and using the **worst** scores first.

o STRONGEST_FIT - The same as FIRST FIT, but keeping scores, and using the

best scores first.

o STRONGEST_FIT_DECREASING - The same as FIRST FIT, but keeping scores, and

using the **best** scores first.

o ALLOCATE_ENTITY_FROM_QUEUE – Experimental algorithm; please do not use

this.

o CHEAPEST_INSERTION – Experimental algorithm; please do not use this.

o ALLOCATE_FROM_POOL– Experimental algorithm; please do not use this.

 'secondarySearchAlgos' – after insertion, the algorithm used to improve the score. It's

strongly recommended that you contact Pontus's professional services to change this

value. For completeness, here is the list of possible values:

o ENTITY_TABU (Default, with a 2% TABU, and no, this is not taboo misspelled, it is

indeed TABU – see https://en.wikipedia.org/wiki/Tabu_search for more details).

o SIMULATED_ANNEALING (see https://en.wikipedia.org/wiki/Simulated_annealing

for more details)

o LATE_ACCEPTANCE

(see http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf for

more details)

o STEP_COUNTING_HILL_CLIMBING

o HILL_CLIMBING (brute force approach trying every possible combination – this is

not feasible for large search spaces)

o ENTITY_TABU,MOVE_TABU

o ENTITY_TABU,UNDO_MOVE_TABU

o SIMULATED_ANNEALING,ENTITY_TABU

o SIMULATED_ANNEALING,ENTITY_TABU,MOVE_TABU

o LATE_ACCEPTANCE,MOVE_TABU

Here is a sample setting for this value:

pvtm_agent_run_solution_command="{

'maximumSecondsSpend':'10','randomize':'true','constructionHeuristicType':'S

TRONGEST_FIT_DECREASING','secondarySearchAlgos':'HILL_CLIMBING' }"

Here is another example that sets the inertiaCpuUtil threshold to a value of 90% :

pvtm_agent_run_solution_command="{

'maximumSecondsSpend':'30','randomize':'false','inertiaCpuUtilThreshold:'90'

}"

https://en.wikipedia.org/wiki/Tabu_search
https://en.wikipedia.org/wiki/Simulated_annealing
http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf

PVTM User’s Guide Page | 68 Copyright © 2016
Pontus Networks

pvtm_agent_run_solution_command_after_new_process_delay

This string option controls the command parameters sent to the simulator (using the same

semantics as the pvtm_agent_run_solution_command option) after PVTM Agent senses the start of

a new application that matches the pvtm_agent_regex_pattern. Once a new application starts,

PVTM Agent waits pvtm_agent_run_solution_new_process_delay_ms milliseconds before using this

alternative set of commands for any future thread pinning requests. If this option is set, PVTM

Agent only uses commands in the option pvtm_agent_run_solution_command between the start of

a new matching application and the expiry of the number of milliseconds set in the

pvtm_agent_run_solution_new_process_delay_ms option.

The default value is for this option to be unset.

This option is very useful for modifying the PVTM Simulator behaviour slightly after new processes

arrive. One useful use case for this is to set the 'inertiaCpuUtilThreshold' value to a value lower

than '100' slightly after a new application starts. This enables the PVTM Simulator model to freely

move threads as soon as a process starts, and then, after a warm-up period, add inertia so the

busier threads stop moving.

pvtm_agent_run_solution_new_process_delay_ms

This integer option controls the delay (in milliseconds) before PVTM Agent starts using the

pvtm_agent_run_solution_command_after_new_process_delay commands for simulation requests.

The delay always starts after PVTM Agent senses the start of a new application that matches the

pvtm_agent_regex_pattern. Between the start time and this delay, PVTM Agent uses the

commands in the pvtm_agent_run_solution_command to request simulations from the PVTM

Simulator. The default value for this option is 30000 (30 seconds):

pvtm_agent_run_solution_new_process_delay_ms=30; note that this option only takes effect if

the option pvtm_agent_run_solution_command_after_new_process_delay is set.

pvtm_agent_same_core_cost

This integer option controls the cost of running apps on the same core. Increasing this value will

artificially inflate the cost of running apps that communicate with each other in the same core. You

should increase this value if the model is trying to run too many apps in the same core. The

default (-1) uses the actual value reported by the OS.

The default value if this option is unset is -1; however, the recommended value is

pvtm_agent_same_core_cost=40;

pvtm_agent_score_callback_lib_file

This string option has the name of a shared library (or DLL) that has alternative implementations

of the defaultNeedToRunSolutionCb() function (see Customizing When to Run a Solution Request

with defaultNeedToRunSolutionCb() for more details).

The default value is an empty string, which causes PVTM Agent to use the default decision-making

to determine when a thread pinning strategy should be requested.

pvtm_agent_score_callback_function_name

This string option has the name of a function inside the pvtm_agent_score_callback_lib_file library

(or DLL) that has alternative implementations of the defaultNeedToRunSolutionCb() function (see

PVTM User’s Guide Page | 69 Copyright © 2016
Pontus Networks

Customizing When to Run a Solution Request with defaultNeedToRunSolutionCb() for more

details).

The default value is an empty string, which causes PVTM Agent to use the default decision-making

to determine when a thread pinning strategy should be requested.

pvtm_agent_score_moving_average_backoff_if_too_high

This Boolean Option controls whether or not PVTM Agent should reset the moving average counter

if a spike in the score is greater than pvtm_agent_score_moving_average_period *

pvtm_agent_delta_score_threshold_percentage / 100.

The default value is pvtm_agent_score_moving_average_backoff_if_too_high = false;

pvtm_agent_score_moving_average_period

This integer option controls the number of previous scores to be used in a moving average of

scores. PVTM Agent keeps a rolling simple moving average of the last 'Moving Average Period'

scores, and uses this number to determine whether a new thread pinning strategy is required.

Note that after re-starting PVTM Agent, an automatic RUN_SOLUTION_CACHED request will be

sent as soon as the moving average vector is filled, so this value can also delay or shorten the

time of the first thread pinning run solution.

The default value is pvtm_agent_score_moving_average_period=5; this value should always be

greater than 1.

pvtm_agent_score_num_ignore_after_pinning

This integer option makes PVTM Agent ignore the next n scores after a thread pinning strategy

was applied. This helps reduce the number of unnecessary pinning strategies, giving the system a

few seconds to settle down after being re-pinned. Note that the number of scores set in this

option will not be added to the moving average after a thread execution layout was implemented.

The default value for this option is pvtm_agent_score_num_ignore_after_pinning=3;

pvtm_agent_search_command_line

This Boolean option controls whether or not the command line arguments are also searched for the

regex set in the option pvtm_agent_regex_pattern. By default, only the executable name is

searched. Where possible, this should be set to false, as setting it to true, especially if there are

many running processes in the system, may cause increased CPU Utilization in the PVTM Agent.

The default value for this option is pvtm_agent_search_command_line=false;

pvtm_agent_search_env_vars

This Boolean option Boolean controls whether or not the environment variables of all processes are

also searched for the regex set in the option pvtm_agent_regex_pattern. By default, only the

executable name is searched. Where possible, this should be set to false, a s setting it to true,

especially if there are many running processes in the system, may cause increased CPU Utilization

in the PVTM Agent.

PVTM User’s Guide Page | 70 Copyright © 2016
Pontus Networks

The default value for this option is pvtm_agent_search_env_vars=false;

pvtm_agent_send_thread_names

This Boolean option controls whether or not PVTM Agent sends thread names to PVTM Simulator.

This option currently only impacts Linux. Whilst this option makes it easier to view information in

the PVTM GUI, it does not significantly impact the PVTM Agent functionality; for applications with

large numbers of threads, this option may also significantly increase the bandwidth and disk

utilization in the PVTM Simulator.

The default value pvtm_agent_send_thread_names = false;

pvtm_agent_set_chrt_rr_priority

This integer option controls the priority level to which PVTM Agent changes any matching threads.

This option will be ignored unless the pvtm_agent_chrt_rr_matching_processes option is set to

true.

The default value for this option is 97 on Linux, and -3 on Windows

WARNING: you must run PVTM Agent as root for this to work.

Notice: On Linux the value in here will appear in top as a negative value.

pvtm_agent_store_last_core_on_command_force_run_solution_cached

This Boolean option controls whether PVTM Agent stores the last core where each thread was

running when a COMMAND_FORCE_RUN_SOLUTION_CACHED:SIZE=<size>:<data> message

arrives. This is used by the LD_PRELOAD library on linux when the environment variable

PVTM_ENABLE_SELF_PINNING is set.

pvtm_agent_timer_poll_cfg_file_interval_ms

This integer option controls how often (in milliseconds) PVTM Agent looks for dynamic

configuration file changes. PVTM Agent can periodically poll a dynamic configuration file to look for

any dynamic options. This is a mechanism to change rules of artificial inter-thread connections

without stopping and starting PVTM Agent. This option sets the number of milliseconds between

each poll. Notice that the file is only processed if its access timestamp has been modi fied. This

option has no impact unless the pvtm_agent_dynamic_config_file_name is set.

The default value is pvtm_agent_timer_poll_cfg_file_interval_ms=30000;

pvtm_agent_timer_poll_command_req_interval_ms

This integer option controls how often (in milliseconds) PVTM Agent looks for new Command and

Control requests. If no requests are outstanding, this mechanism behaves like a heartbeat.

Setting this value to zero or a negative number disables this feature.

The default value is pvtm_agent_timer_poll_command_req_interval_ms=0 (Disabled). If enabling

this feature is required, the recommended value is 5000.

PVTM User’s Guide Page | 71 Copyright © 2016
Pontus Networks

pvtm_agent_timer_poll_proc_interval_ms

This integer option controls how often (in milliseconds) PVTM Agent looks for new processes

matching the regular expression set in pvtm_agent_regex_pattern.

pvtm_agent_timer_poll_proc_interval_ms=15000;

pvtm_agent_timer_poll_thread_interval_ms

This integer option controls how often (in milliseconds) PVTM Agent looks for new threads, and

how often PVTM Agent measures the CPU utilization of existing threads. Once PVTM Agent finds a

list of processes that match the regex filter, it will start introspection of the threads for their CPU

utilization. The Timer Thread Interval controls how often this happens. Making this value too long

may makes the thread manager lose too many thread patterns; similarly, making this value too

short may impact the performance of PVTM Agent, and make it too reactive to small changes in

application behaviour. This value must always be lower than the

pvtm_agent_timer_poll_proc_interval_ms value.

The default value is pvtm_agent_timer_poll_thread_interval_ms=2000;

pvtm_agent_unsolicited_run_threshold

This integer option controls how often to send unsolicited run solution requests to PVTM Simulator.

Users can configure PVTM Agent to send optionally a RUN_SOLUTION_CACHED request message

not triggered by any changes in scores. The pvtm_agent_unsolicited_run_threshold option

controls how often these unsolicited requests occur. To disable this feature, set this option to -1.

The default value is pvtm_agent_unsolicited_run_threshold=50;

pvtm_agent_wait_before_sending_run_solution_ms

This integer option makes PVTM Agent wait pvtm_agent_wait_before_sending_run_solution_ms

milliseconds from the time the last STOP_SOLUTION request message was sent. This gives the

agent a cool-off period preventing it from over pinning the environment.

The default value is pvtm_agent_wait_before_sending_run_solution_ms = 10000;

pvtm_agent_wait_outstanding_pinning_request

This Boolean option causes PVTM Agent to wait for a solution result to return before sending the

next RUN_SOLUTION_CACHED request message.

The default value is pvtm_agent_wait_outstanding_pinning_request = false;

pvtm_agent_web_socket_interval_us

This integer option controls how often (in microseconds) PVTM Agent waits for new data from each

web socket in use. Setting this value too low may cause increased CPU utilization. Note that this

value will impact the minimum frequency of the pvtm_agent_timer_poll_thread_interval_ms.

Users should not normally change this, unless the pvtm_agent_timer_poll_thread_interval_ms is

not matching the requested period. As an example, this option should not be changed, if setting

the pvtm_agent_timer_poll_thread_interval_ms option to 300ms, and waiting for data on each

PVTM User’s Guide Page | 72 Copyright © 2016
Pontus Networks

web socket for that period will cause longer delays than 300ms. This happens because PVTM

Agent will go through each of its sockets and wait that long.

The default value is pvtm_agent_web_socket_interval_us=300000;

pvtm_agent_web_socket_max_payload_bytes

This integer option controls the maximum packet size allowed to be sent by the agent to the

server. In large servers with large number of threads, or large numbers of inter -thread

connections, the size of the messages to PVTM Simulator can grow quite large. If the messages

are larger than the value in this option, PVTM Agent will not be able to send messages to PVTM

Simulator. This usually manifests itself as a socket error message that keeps on appearing on

PVTM Agent's console. In those cases, it may be worth increasing this value.

WARNING: the agent's memory footprint will increase 10 x this value, as we currently have // 10

web sockets conns per client.

NOTE: if you do see socket errors, a better option to also change the following option in the run-

threadmgr.(sh|bat) file:

-Dpvtm.websockets.maxTextMessageBufferSize=8600000

The default value for this option is pvtm_agent_web_socket_max_payload_bytes=2097152;

PVTM User’s Guide Page | 73 Copyright © 2016
Pontus Networks

Chapter 6. PVTM Simulator

PVTM Simulator is a 100% Java application that typically runs on a separate server to the one that

needs to be optimized, and performs three main functions:

1. PVTM Score Calculation – computing a PVTM Score that reflects the current state of a

system,

2. Thread Execution Layout Simulation - running millions of simulations to optimize the score

3. Historical Repository - storing any significant changes in the environment, including

previous simulation results in an elastic search big-data database.

The following sections will cover each of these three activities in more detail.

PVTM Score Calculation

PVTM Score calculation is one of the most important features of Pontus Vision Thread Manager

(PVTM). PVTM Simulator penalizes poor system behaviour by adding values to the PVTM Score;

the lower the PVTM Score, the better the application performance should be. The PVTM Score of

any running system should always be a positive integer greater than zero. A zero score typically

means that the PVTM Agent did not find any applications that matched the criteria, and as such is

invalid. Negative scores are not allowed. Other instances where a score appears as positive, but

may still be invalid happen when threads (or IRQs) are running in a list of cores that is either not

allowed for their parent process, or that are running in a list of junk cores.

The PVTM Score combines two main factors that determine how well the system should perform:

 Context Switches, or, in PVTM Simulator's terms, the number of active threads that are

competing for the same core

 Inter-thread Communication Costs, or, in PVTM Simulator's terms, the cost of moving data

between threads

The following sections cover the algorithms used to calculate these factors.

Context Switches

As seen in the pvtm_agent_context_switch_cost section, the simulator penalizes context switches

by using the following formula:

Pct =
ln(𝑛𝑢𝑚𝑇ℎ𝑟𝑒𝑎𝑑𝑠) ∗ 𝐶𝑃𝑈𝑈𝑡𝑖𝑙 ∗ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑆𝑤𝑖𝑡𝑐ℎ𝐶𝑜𝑠𝑡

𝐶𝑝𝑢𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

Where:

numThreads is the number of threads currently scheduled in the core,

CPUUtil is the total CPU percentage of the threads currently scheduled in the core, or 0.01

if the total util is zero)

ContextSwitchCost is the value set in the SET_COMPUTER message

CPUScalingFactor is either 1, or the value set in the RUN_SOLUTION_CACHED request

message

PVTM User’s Guide Page | 74 Copyright © 2016
Pontus Networks

This formula penalizes a large number of threads running on a set of cores exponentially, and if

the number of threads is zero, a zero penalty is applied. For example, let's assume that a system

has 4 cores, and 10 threads running with the following layout shown in Figure 5, with a context

switch cost value of 1000, and a CPU Scaling factor of 1:

Figure 5 – Sample Thread Execution Layout

In its current state, the context switch penalty score for the system would be approximately

160958; here's the breakdown of applying the formula for each core:

Core 0 Penalty = ln(5) * 100 * 1000 = 160944

Core 1 Penalty = ln(1) * 100 * 1000 = 0

Core 2 Penalty = ln(4) * 0.01 * 1000 = 14

Core 3 Penalty = = 0

In contrast, if we re-arranged the threads to be more equally divided as in Figure 6, the context

switch penalty score for the system would be approximately 56630; here is the breakdown of

applying the formula for each core:

Core 0 Penalty = ln(6) * 20 * 1000 = 35835

Core 1 Penalty = ln(2) * 30 * 1000 = 20794

Core 2 Penalty = ln(1) * 100 * 1000 = 0

Core 3 Penalty = ln(1) * 50 * 1000 = 0

Notice that the layout in Figure 6 is likely to cause fewer context switches to the busier threads (T3

and T5) by leaving them without any other contention. At the same time, threads T0 and T4, with a

total combined CPU utilization of 30%, only have each other to contend. Lastly, threads T1 and T2

have all the other zero percent threads T6-9 (which may periodically wake up) to contend with.

T0

20%
CPU

T1

10%
CPU

T2
10%
CPU

T3

50%
CPU

T5
100%
CPU

T4

10%
CPU

T6

0%
CPU

T7

0%
CPU

T8

0%
CPU

T9

0%
CPU

Core 0

Core 1

Core 2

Core 3

PVTM User’s Guide Page | 75 Copyright © 2016
Pontus Networks

Figure 6 - Re-balanced thread execution layout

It is also important to notice that not every application needs to be penalized by the context switch

costs in the same manner. For example if the goal of the simulation were to reduce the number of

active threads, and run the same Thread Execution layout as Figure 5, the contextSwitchCost

parameter could be set to 0. In practise, however, the extra length of time needed to run the

application would likely suffer dramatically from doing that, negating any power savings achieved

by not using the 2 cores, thus it is not recommended to set the contextSwitchCost to 0.

Inter-thread Communication Cost

The second main factor involved in the score is the inter-thread communication cost. To calculate

this cost, PVTM Simulator uses the following formula:

Pitcc = ∑ (cost(k𝑐𝑜𝑟𝑒 , n𝑐𝑜𝑟𝑒) . connWeight (k, n))

𝑛

𝑘=0

Where:

k is the current thread, n is the number of neighbours to k,

cost (kcore,ncore) is the cost between the current core where thread k is located and the

current neighbour n,

connWeight(k,n) is the weight of the connection between thread k and the current

neighbour n.

If a thread has no neighbours, then a penalty of 1 is applied. The details of how the costs are

obtained are beyond the scope of this document. The following PVTM Agent options lead to an

increase in the score, as they either impact the weights between connections, or artificially add

new connections:

 pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_mins_json_array

 pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_maxs_json_array

T
0

20%

CPU

T
1

10%

CPU

T 2

10%

CPU

T 3
50%

CPU

T 5

100%

CPU

T 4

10%

CPU

T 6

0%

CPU

T 7

0%

CPU

T 8

0%

CPU

T 9

0%

CPU Core 0

Core 1

Core 2

Core 3

PVTM User’s Guide Page | 76 Copyright © 2016
Pontus Networks

Thread Execution Layout Simulation

The thread execution layout simulation is the PVTM Simulator activity that finds an optimized

solution to any given Target Software Model running in a Target Hardware Model. During the

thread execution layout simulation, PVTM Simulator selectively moves application threads to

different cores continuously re-calculating the PVTM score after each move. The thread execution

layout simulation has two main phases: initial placement, and score improvement.

Initial Placement

During the initial placement phase, PVTM Simulator can use one of three strategies:

1. Use the current thread execution layout as the starting point (default in the PVTM Agent)\

2. Randomly assign threads to cores without allowing any invalid thread allocations (e.g.

threads placed outside the allowed cores, or threads placed in junk cores).

3. Clear the current thread layout, and apply one of the following mechanisms:

a. FIRST_FIT – the PVTM Simulator uses the first valid (i.e. that only uses valid

cores) first thread execution layout it can find in increasing order of complexity,

placing lower percentage threads first, then threads with fewer neighbour

connections and then continuing from there regardless of scores.

b. FIRST_FIT_DECREASING – the same as first fit, but in reverse order.

c. WEAKEST_FIT – The same as FIRST FIT, but keeping scores, and using the

worst scores first.

d. WEAKEST_FIT_DECREASING – The same as FIRST_FIT_DECREASING, but keeping

scores, and using the **worst** scores first.

e. STRONGEST_FIT - The same as FIRST FIT, but keeping scores, and using the

best scores first.

f. STRONGEST_FIT_DECREASING - The same as FIRST FIT, but keeping scores, and

using the **best** scores first.

g. ALLOCATE_ENTITY_FROM_QUEUE – Experimental algorithm; please do not use

this.

h. CHEAPEST_INSERTION – Experimental algorithm; please do not use this.

i. ALLOCATE_FROM_POOL– Experimental algorithm; please do not use this.

Score Improvement

After the initial placement, PVTM Simulator tries millions of thread moves to improve the score.

PVTM Simulator can use a number of algorithms to organize and implement these moves. The

default algorithm is versatile enough to cope with most scenarios. It is strongly recommended to

contact Pontus's professional services to get help to change the algorithm. A deep explanation for

what these algorithms do is beyond the scope of this document. For completeness, here is the list

of the current choices:

 ENTITY_TABU (Default, with a 2% TABU, and no, this is not taboo misspelled, it is indeed

TABU – see https://en.wikipedia.org/wiki/Tabu_search for more details).

 SIMULATED_ANNEALING (see https://en.wikipedia.org/wiki/Simulated_annealing for more

details)

 LATE_ACCEPTANCE (see

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf for more details)

 STEP_COUNTING_HILL_CLIMBING

PVTM User’s Guide Page | 77 Copyright © 2016
Pontus Networks

 HILL_CLIMBING (brute force approach trying every possible combination – this is not

feasible for large search spaces)

 ENTITY_TABU,MOVE_TABU

 ENTITY_TABU,UNDO_MOVE_TABU

 SIMULATED_ANNEALING,ENTITY_TABU

 SIMULATED_ANNEALING,ENTITY_TABU,MOVE_TABU

 LATE_ACCEPTANCE,MOVE_TABU

Historical Repository

PVTM Simulator uses an embedded Elastic Search 2.0 big data database to store any significant

changes in the environment, including previous simulation results. The following sections cover

the layout of the database, as well as a few useful queries.

PVTM Elastic Search Schema

PVTM Simulator keeps each PVTM Agent's set of messages stored in a different index with the

PVTM Agent's name (usually the host name in the machine being optimized).

The following sections show the mappings that PVTM Simulator keeps for each index:

"RUN_SOLUTION_CHECK_CACHED"

This mapping stores previously cached simulation results. It has the following properties:

 "normReqHash" : a string hash computed by PVTM Agent to match previous simulation

results

 "normResults" : a complex object with the normalized simulation results; it has the

following properties of its own:

a. coreIds – a long property with the last core number where a thread was running

b. numaZoneIds – a long property with the last numaZoneId where a thread was

running

c. pid – a long property with the process ID

d. threadIds: a long property with the thread ID

 "score" : a long property with the score computed for this set of simulation results

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1 st 1970)

"RUN_SOLUTION_CHECK_CACHED_REQUEST"

This mapping stores simulation requests made by PVTM Agent. It has the following properties:

 "normReq" a complex object with the normalized request from PVTM agent. It has the

following properties of its own:

a. "computerJson" : a JSON representation of the SET_COMPUTER message sent by

PVTM Agent

PVTM User’s Guide Page | 78 Copyright © 2016
Pontus Networks

b. "normAppLinksJson" : a JSON representation of the normalized SET_APPLINKS

message sent by PVTM Agent (normalized in this context means stripped of any

process names or process IDs).

c. "normAppsJson" : a JSON representation of the normalized SET_APPS message

sent by PVTM Agent.

 "normReqHash" : a string hash computed by PVTM Agent to match previous simulation

results

 "reason" : a string property describing the reason why the request was originally made

(this is used by PVTM GUI to highlight the green dots in the time series graphs.

 "score" : a long property with the score of the system at the time the request was made.

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

"SET_COMPUTER"

This mapping is stored whenever PVTM Agent sends a new SET_COMPUTER message to PVTM

Simulator. It has two main properties:

 "computer" : a string property with a JSON representation of the SET_COMPUTER message

sent by PVTM Agent

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

"SET_APPLINKS"

Similar to "SET_COMPUTER", this mapping is stored whenever PVTM Agent sends a new

SET_APPLINKS message to PVTM Simulator. It has three main properties:

 "appLinks" : a string property with a JSON representation of the SET_APPLINKS message

sent by PVTM Agent

 "score" : a long property with the score of the system at the time the request was made.

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

"SET_APPS"

Similar to "SET_COMPUTER", this mapping is stored whenever PVTM Agent sends a new SET_APPS

message to PVTM Simulator. It has three main properties:

 "appLinks" : a string property with a JSON representation of the SET_APPS message sent

by PVTM Agent

 "score" : a long property with the score of the system at the time the request was made.

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

"RUN_SOLUTION_STATUS"

This mapping stores status messages coming from PVTM Agent whenever a pinning strategy was

implemented. PVTM GUI interprets this mapping as red dots in the time series graphs.

The mapping has three main properties:

 normReqHash" : a string hash computed by PVTM Agent to match previous simulation

results

 "score" : a long property with the score of the system at the time the request was made.

PVTM User’s Guide Page | 79 Copyright © 2016
Pontus Networks

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

"EVENT"

This mapping stores events that appear as annotations in the PVTM GUI's time series canvas. The

mapping has three main properties:

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

 "shortText": a one or two-character code displayed in the annotations in the PVTM GUI's

time series graphs.

 "longText": a longer string that appears when users hover the mouse over the annotations

in the PVTM GUI's time series graphs.

"CONFIG"

This mapping stores configuration changes pushed from the PVTM GUI to PVTM Agents. This

mapping has three main properties:

 "time" : a long property with an epoch timestamp (number of seconds since Jan 1st 1970)

 "description": a short description of what was changed in the configuration.

 "configStr": a BASE 64 encoded string with all the contents of the PVTM Configuration file.

PVTM Elastic Search Queries

By default, the elastic search engine will listen to port 9200 for queries. Queries can be made

from web browsers, or from the command line on Linux or Windows (with Cygwin or a Linux -like

shell) by using the curl command.

The format of the queries is typically the following:

http://<PVTMSimHost>:9200/<PVTMAgentName>/<Queries>

The following sections show useful queries using localhost as the PVTM Simulation Host and using

leo2-pc as the PVTM Agent name:

Dumping the current schema:

The following query dumps the current schema for the leo2-pc index:

$ curl -XGET http://localhost:9200/leo2-pc

Here is a sample output:

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 2763 100 2763 0 0 179k 0 --:--:-- --:--:-- --:--:-- 179k

{"leo2-

pc":{"aliases":{},"mappings":{"RUN_SOLUTION_CHECK_CACHED":{"properties":{"normReqHa

sh":{"type":"string"},"normResults":{"properties":{"coreIds":{"type":"long"},"numaZ

oneIds":{"type":"long"},"pid":{"type":"long"},"threadIds":{"type":"long"}}},"score"

:{"type":"long"},"time":{"type":"long"}}},"RUN_SOLUTION_CHECK_CACHED_REQUEST":{"pro

perties":{"normReq":{"properties":{"computerJson":{"properties":{"properties":{"pro

perties":{"contextSwitchCost":{"type":"string"},"id":{"type":"string"},"junkCores":

{"type":"string"},"latencyMatrix":{"type":"string"},"physicalCpuList":{"type":"stri

ng"}}},"type":{"type":"string"}}},"normAppLinksJson":{"properties":{"sTid":{"type":

http://localhost:9200/leo2-pc

PVTM User’s Guide Page | 80 Copyright © 2016
Pontus Networks

"string"},"sourceId":{"type":"string"},"tTid":{"type":"string"},"targetId":{"type":

"string"},"type":{"type":"string"}}},"normAppsJson":{"properties":{"properties":{"p

roperties":{"allowedCores":{"type":"string"},"assumeAllThreadsTalk":{"type":"string

"},"id":{"type":"string"},"pvtmCurrentCores":{"type":"string"},"pvtmThreadIds":{"ty

pe":"string"},"threads":{"type":"string"}}},"type":{"type":"string"}}}}},"normReqHa

sh":{"type":"string"},"reason":{"type":"string"},"score":{"type":"long"},"time":{"t

ype":"long"}}},"SET_COMPUTER":{"properties":{"computer":{"properties":{"properties"

:{"properties":{"contextSwitchCost":{"type":"string"},"id":{"type":"string"},"junkC

ores":{"type":"string"},"latencyMatrix":{"type":"string"},"physicalCpuList":{"type"

:"string"}}},"type":{"type":"string"}}},"time":{"type":"long"}}},"SET_APPLINKS":{"p

roperties":{"appLinks":{"properties":{"properties":{"properties":{"allowedCores":{"

type":"string"},"assumeAllThreadsTalk":{"type":"string"},"id":{"type":"string"},"pv

tmCurrentCores":{"type":"string"},"pvtmThrdNames":{"type":"string"},"pvtmThreadIds"

:{"type":"string"},"threads":{"type":"string"}}},"sTid":{"type":"string"},"sourceId

":{"type":"string"},"tTid":{"type":"string"},"targetId":{"type":"string"},"type":{"

type":"string"}}},"score":{"type":"long"},"time":{"type":"long"}}},"RUN_SOLUTION_ST

ATUS":{"properties":{"normReqHash":{"type":"string"},"score":{"type":"long"},"time"

:{"type":"long"}}},"SET_APPS":{"properties":{"CPU":{"type":"long"},"apps":{"propert

ies":{"properties":{"properties":{"allowedCores":{"type":"string"},"assumeAllThread

sTalk":{"type":"string"},"id":{"type":"string"},"pvtmCurrentCores":{"type":"string"

},"pvtmThrdNames":{"type":"string"},"pvtmThreadIds":{"type":"string"},"threads":{"t

ype":"string"}}},"type":{"type":"string"}}},"score":{"type":"long"},"time":{"type":

"long"}}}},"settings":{"index":{"creation_date":"1446229293642","uuid":"_Mz6zzKVQSa

rmCuvg9ExZw","number_of_replicas":"1","number_of_shards":"5","version":{"created":"

2000099"}}},"warmers":{}}}

Find the Index and Node Shards

Elastic search splits the data amongst shards that are hosted by a number of different instances.

Occasionally, if an instance is no longer used, it is required to re-organize which indices belong to

which shards, and to move them to the current one. This can be done with two operations:

1) Find the current shards:

curl -XGET http://localhost:9200/_cat/shards

2) Re-home the shards: - we provide a script to re-home shards under

<install_dir>/4.7.0/linux/es-move-shards.sh

This script takes two arguments:

./es-move-shards.sh <index to move> <node to move to>

The output of step (1) will be similar to this:

curl -XGET http://localhost:9200/_cat/shards

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 4020 100 4020 0 0 10720 0 --:--:-- --:--:-- --:--:-- 10720

localhost.localdomain 2 p STARTED 3648 668.6kb 127.0.0.1 Blur

localhost.localdomain 2 r UNASSIGNED

localhost.localdomain 3 p STARTED 3629 629.5kb 127.0.0.1 Blur

localhost.localdomain 3 r UNASSIGNED

localhost.localdomain 4 p STARTED 3673 645.9kb 127.0.0.1 Blur

localhost.localdomain 4 r UNASSIGNED

PVTM User’s Guide Page | 81 Copyright © 2016
Pontus Networks

localhost.localdomain 1 p STARTED 3571 631.6kb 127.0.0.1 Blur

localhost.localdomain 1 r UNASSIGNED

localhost.localdomain 0 p STARTED 3635 624.5kb 127.0.0.1 Blur

localhost.localdomain 0 r UNASSIGNED

From this, the current node name for 127.0.0.1 is Blur. To move all the data from an index that

was previously active in an elastic search node that is down to Blur, you could simply run the

following command:

 ./es-move-shards.sh <agent name> Blur

Find all the simulation results between two Timestamps

Sometimes it is useful to query data directly from elastic search; the following query shows all the

RUN_SOLUTION_CHECK_CACHED results between two timestamps (epoch in milliseconds) from an

agent called 'leo2-pc':

curl -XPOST "http://localhost:9200/leo2-pc/RUN_SOLUTION_CHECK_CACHED/_search" -d'

{

 "query" : {

 "range" : {

 "time" : {

 "from" : 1455066061526,

 "to" : 1455152461526,

 "include_lower" : true,

 "include_upper" : true

 }

 }

 }

}

'

Here are the normalized results, which show the "normResults" value for two processes with pid

0 and pid 1:

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0{

 "took" : 8,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "leo2-pc",

 "_type" : "RUN_SOLUTION_CHECK_CACHED",

 "_id" : "AVLKoEKd-GYkw2WINmfY",

 "_score" : 1.0,

 "_source":{ "time":

1455098446493,"normReqHash":"ac926dba97cbfa8c464fbc1a6f670054b3eb9a4191e89d5fc6f981

2c8ec3a44c","score":"10408","normResults":[{"pid":0,"threadIds":[0,1,2,3,4,5,6,7,8,

9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,

37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64

,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91],

"coreIds":[3,3,3,1,3,2,1,2,1,1,1,3,1,0,0,0,1,0,1,2,0,0,2,2,0,0,0,3,1,2,1,3,0,3,3,3,

PVTM User’s Guide Page | 82 Copyright © 2016
Pontus Networks

3,3,3,3,3,1,3,3,3,0,3,3,3,3,2,1,0,0,2,1,1,1,3,0,2,0,2,1,3,0,3,2,0,1,2,0,2,2,3,0,3,1

,3,1,2,2,0,2,3,2,3,0,0,0,2,1],"numaZoneIds":[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0

],[0],[

0],[0],

[0],[0]

,[0]]},

{"pid":1,"threadIds":[92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,1

09,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,

130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150

,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,17

1,172,173,174,175,176,177,178,179,180,181],"coreIds":[3,2,0,1,2,1,0,1,2,1,1,1,1,2,0

,3,1,0,0,1,0,3,2,3,0,2,1,2,2,2,2,2,2,2,2,2,0,1,0,1,2,2,3,1,0,0,1,3,3,0,3,0,2,3,0,0,

0,1,2,1,0,3,1,1,1,0,2,1,2,0,1,3,3,0,1,1,0,3,1,2,3,2,2,3,3,0,2,2,3,1],"numaZoneIds":

[[0],[0

],[0],[

0],[0],

[0],[0]

,[0],[0],[0],[0],[0],[0],[0]]}]}

 }

]}

 }]

 }

}

PVTM Elastic Search Configuration

The elastic search configuration file may be overridden with a custom pvtm.yml file by setting the

property -Dpv.elasticsearch.node.config.url=file://<path to the pvtm.yml file>. It is beyond the

scope of this document to go into details on how to configure elastic search; however, here are a

few steps to configure the port number so the PVTM Simulator instance does not clash with other

existing instances:

1) create a file called pvtm.yml in the thread manager simulator server's (in colo) install dir,

with the following line:

transport.tcp.port: 9036

2) add the following option to the run-threadmgr.sh file in the thread manager simulator

server's (in colo):

-Dpv.elasticsearch.node.config.url=file://<path to the pvtm.yml file from

(a)>

3) add the following options to the run-gui.sh file in the GUI Server (campus):

-Dpv.elasticsearch.transportclient.host=<IPaddress of enyrs040011)> \

-Dpv.elasticsearch.transportclient.port=9036

Command Line

PVTM Simulator uses the same jar file as the PVTM GUI. The command line is under the

<installation directory>/4.7.0/ folder. The windows version is in the run-threadmgr.bat file,

whereas the Linux version is in the run-threadmgr.sh file. Normally, the installer fills out the

contents of these files, but in certain circumstances, they need to be manually edited. Here is a

list of the main command line arguments:

PVTM User’s Guide Page | 83 Copyright © 2016
Pontus Networks

 -Xmx2048m

This controls the maximum memory size of the Java Virtual Machine; this value this value

should be approximately 500MB-1GB per agent being monitored.

 -javaagent:/home/leo/pontus-vision/4.7.0/linux/pvtm-agent.jar

This optional command line argument

 -Dpv.threadmgr.configFile=""

This option allows an optional configuration file to be passed to PVTM Simulator to control

the simulator's behaviour; this option should only be used after engaging with Pontus 's

professional services team.

 -Dpv.threadmgr.httpPort=8444

This option selects the port number that the agents use to communicate with PVTM Thread

Manager.

 -Dpv.elasticsearch.node.config.url=file://<path to the pvtm.yml file>

This option selects an overriding path to configure the embedded elastic search engine

 -Dpvtm.websockets.maxIdleTimeout= 3000000

This option controls the maximum amount of idle time on a web socket (in milliseconds)

 -Dpv.threadmgr.num.term.early.process.threads=0

This option controls the number of threads used to post-process simulation results that

were terminated early.

 -Dpv.threadmgr.return.terminated.early.results=true

This option controls whether simulation results that were terminated early should be sent

back to PVTM Agent. Simulations usually get terminated early if PVTM Agent sends a

STOP_SOLUTION request message whilst a simulation is currently being run. This typically

happens in environments where there is a lot of volatility in the PVTM Scores.

 -Dpv.threadmgr.jmsDynamicCommands=true

This option selects whether or not PVTM Simulator will use a JMS broker to send/receive

commands from PVTM GUI destined to PVTM Agent.

 -Dpontus.agent.broker.name="tcp://localhost:61616"

This option controls the JMS Broker name used by PVTM Simulator to communicate with

PVTM GUI and send/receive dynamic commands to PVTM Agent.

 -Dpv.threadmgr.to.gui.topic="pvtm.threadmgr.to.gui.topic"

This option controls the JMS Topic used to send data from PVTM Simulator to PVTM GUI.

 -Dpv.threadmgr.to.gui.topic="pvtm.threadmgr.from.gui.topic"

This option controls the JMS Topic used to send data from PVTM GUI to PVTM Simulator.

 -Dpontusvision.license.info="PontusVision.*"

This option selects the license information for PVTM Simulator. This value is customer -

specific, and is typically entered as part of the installation process.

 -Dpontusvision.license.holder="o=temp,ou=license,cn=test123"

This option selects the license key information for PVTM Simulator. This value is customer -

specific, and is typically entered as part of the installation process.

 -Dpontusvision.license.file="~/pontus-vision/4.7.0/license.lic"

This option selects the license file information for PVTM Simulator. This value is customer -

specific, and is typically entered as part of the installation process.

 -Dpvtm.websockets.maxTextMessageBufferSize=8388608

This option selects the maximum web sockets message size to be sent and received by

PVTM Simulator. This value only needs to be increased in environments where the agent

is running on servers with high number of threads (1000 +), or high number of inter-

thread communication connections (10000+)

 -Dpvtm_history_prefix="/home/leo/pontus-vision/4.5.0/pvtm-storage/"

This option selects the folder where the embedded Elastic Search engine will store its data.

This should be a local disk with as much storage as possible.

PVTM User’s Guide Page | 84 Copyright © 2016
Pontus Networks

 -Dpvtm.normalized.solution.level3Cache="true"

This option determines whether or not PVTM Simulator searches for previously stored

normalized solutions across different PVTM Agent indices.

 -Dpvtm.normalized.solution.level2Cache="true"

This option determines whether or not PVTM Simulator searches for previously stored

normalized solutions for the same PVTM Agent index.

 pv.elasticsearch.node.create="true"

This option determines whether or not PVTM Simulator creates new elastic search nodes.

 -cp "/home/leo/pontus-vision/4.7.0/vision-server.jar"

This selects the path to the vision-server.jar file (this is typically filled out by the installer).

 com.pontusnetworks.threadmgt.app.ThreadMgrWebSocketsSvc

This is the class name that starts the web sockets version of PVTM Simulator.

PVTM User’s Guide Page | 85 Copyright © 2016
Pontus Networks

Chapter 7. PVTM GUI

PVTM GUI is a pure Java application that typically runs on the same server as PVTM Simulator.

PVTM GUI allows users to query the data stored in PVTM Simulator, to run off-line simulations, and

also control aspects of PVTM Agent. This chapter describes how this functionality works, as well

as administrative tasks, such as logging in, and changing passwords. PVTM GUI currently uses the

Pontus Vision framework, which is a full configuration management system. For brevity, the scope

of this document will focus mostly on the PVTM-related functionality. The following sections

describe how each of the PVTM-related parts of the GUI:

Login Screen

As soon as PVTM GUI is started (see Starting PVTM Simulator and GUI), users can login to the

system using the appropriate URL from a Browser (the default URL is https://localhost:8443/). If

logging in for the first time, the following user name and password should be used:

User: root

Pass: pa55word

As soon as the login is successful, the next screen that appears is the Main Canvas.

PVTM User’s Guide Page | 86 Copyright © 2016
Pontus Networks

Main Canvas

The Main Canvas allows users to navigate throughout the user interface. By default, as soon as a

user logs in, an instance of The Time series Graph Window appears, along with a splash screen

showing the latest release notes. Closing both of these windows reveals the Main Canvas.

The Main Canvas has two main areas: the Top Toolbar, and the Navigation Buttons.

Top Toolbar

The Top toolbar allows users to explore a number of Pontus Vision framework features that are

outside the scope of this document. These will only be briefly mentioned here for completeness:

 The Search Button located in the top centre of the top toolbar enables users to search the

Pontus Vision Framework's templates, knowledge base, and configuration placeholders.

 The Home Icon takes users back to the main canvas PVTM screen

 The Min/Max Icon takes users to the PontusVision Framework view, which is out of

scope for this document. To return to the main canvas, either click on the Home Icon.

 The Settings Icon enables users to modify PontusVision Framework settings, which are

currently out of scope for this document.

 The Users Icon allows users to change the current user's password; it brings up the

window in the Changing the Password section.

 The Information Icon brings up the current license information, and also allows users to

update the license key without restarting PVTM (see Updating the license) for more details.

 The Logout Icon takes users back to the Login Screen.

PVTM User’s Guide Page | 87 Copyright © 2016
Pontus Networks

Navigation Buttons

Four main buttons allow users to Navigate to the main thread manager windows:

 The PVTM Scores button brings up new instances of The Time series Graph Window.

 The Remote Control button brings up new instances of The Remote Control Window

 The Design Components button brings up new instances of The Design Components

Window

 The Offline Simulator Button brings up new instances of The Offline Simulator Window,

in offline simulation mode. This enables users to build their own applications using custom

software and hardware components without having previously run any PVTM Agents

The Release notes Splash Screen

The release notes splash screen shows details of bug fixes and enhancements in the latest release,

as well as previous releases. This window has three basic buttons:

 Start Tour – starts a step-by-step guide on how to use The Time series Graph Window

 Close – closes the window

 Always show this message – determines whether this screen will appear in the future for

this user.

PVTM User’s Guide Page | 88 Copyright © 2016
Pontus Networks

The Time series Graph Window

The Time series Graph Window shows historical scores for servers where PVTM Agent is running.

This window automatically appears as soon as users login to the PVTM GUI. Each window shows

the historical and semi-real-time scores for a single host. To view scores from multiple servers,

several instances of this window may be opened by clicking on The Thread Manager Scores button

in the Navigation multiple times.

This window has three main areas: The Time series Toolbar, The Time series Canvas, and The

Preview Area.

The Time series Toolbar

The time series toolbar has several widgets:

 Refresh Button – refreshes The Time Series Canvas with the latest data, and also

refreshes the list of available hosts, as well as the Agent Control status

 Select a Host combo box – enables users to select a time series for any hosts running a

PVTM Agent. Here are some notes about this widget:

o The drop-down will be empty until at least one PVTM Agent runs.

o If selecting a host does not produce a graph, the PVTM Agent on that host may be

inactive, and data may have been available in the past; try selecting a larger

Historical Time Window.

o Starting in version 4.7.0.13, hovering the mouse on top of this widget opens it up;

it is no longer necessary to click on it.

 Graph Control Menu Button– As soon as users click on this menu button, the Graph

Types popup window opens with the following check boxes:

PVTM User’s Guide Page | 89 Copyright © 2016
Pontus Networks

o Total CPU % checkbox – enables users to overlay the total CPU % utilization

across all threads being monitored on top of the score time series. Note that the

legend for the CPU % utilization appears on the right-hand side of The Time Series

Canvas

o Thread Pinning Points checkbox– overlays green dots on The Time series Canvas

that represent a point in time when a thread pinning request was made by the

agent, and overlays red dots that represent a point in time when a thread pinning

solution was applied by the agent.

o Auto Refresh checkbox – polls the time series data every 5 seconds, updating the

Date box to the current time, which in turn refreshes The Time series Canvas.

o Date box – enables users to specify a point in time for the right-most data item in

the graph. The Historical Time Window selects the left-most point.

o Historical Time Window (5 minutes) – enables users to choose different time spans

to view the time series data starting from the Start Time.

o Zoom Out Button – resets the zoom in the Time Series Canvas to match the

currently selected Start Time and Historical Window boundaries.

o Log Scale checkbox - changes the y-axis of the time series into a log scale when

checked, and a linear scale when unchecked. This is helpful to compare many

graphs that are orders of magnitude apart.

o Show annotations checkbox - when checked, it adds annotations to important

events in the time series. The annotations have one or two characters; here are a

few examples:

 B - begin of a new session - this appears whenever PVTM Agent connects

to the PVTM Simulator. Note that when a configuration is changed, this

can appear multiple times as the agent connects and disconnects to apply

the new configuration.

 E - end of a session - indicates that PVTM Agent has disconnected from the

PVTM Simulator.

 C - new configuration - indicates that a new configuration has been

applied.

 Ru - run solution - indicates that a new set of run solution parameters has

been applied (see

pvtm_agent_run_solution_command_after_new_process_delay for more

details of when this can happen).

 M - multiple - indicates that multiple events have occurred at a particular

point in time. This typically appears when the Analyse Data button has

been pressed.

 oc - overloaded core - indicates that a core has more than one active

thread

 tc - thread created - indicates that a thread has been created.

 td - thread destroyed - indicates that a thread has been destroyed.

 Configure Button - changes the Preview Area into configuration mode. This enables

users to review the existing configuration, modify it, and send it out to an individual PVTM

Agent.

 Analyse Data Button - takes the existing time series displayed, and analyses all the

historical data for that period, highlighting events such as oversubscribed cores (e.g. cores

with more than one active thread), and threads being created and destroyed. When users

click this button, the bottom half of the screen shows these statistics. To revert to the

normal Thread Management Preview Area, simply click on any point in the time series.

 Agent Control Menu Button – This toolbar button serves two purposes: first, it shows

the status of the agents (after the refresh button is pressed); second, clicking on this

PVTM User’s Guide Page | 90 Copyright © 2016
Pontus Networks

shows a popup window that enables users to make PVTM Agent active or passive. When

PVTM Agent is active, it will automatically apply thread pinning strategies; when it is

passive, it will simply collect data.

 Preview Checkbox – when checked, it opens up the panel with The Preview Area. When

unchecked, it opens The Preview Area.

The Time Series Canvas

The time series canvas shows different time series depending on which toolbar widgets are

selected. The time series data is summarized by taking the biggest peak values across a time

period. As such, data over large time windows lose granularity; however, users can still look at

more granular data by zooming in the graph. To zoom in the graph horizontally or vertically, users

can drag the mouse so a grey shade appears as shown below:

After releasing the mouse and waiting a few seconds, the example above would appear as follows:

PVTM User’s Guide Page | 91 Copyright © 2016
Pontus Networks

NOTE: To zoom out, double click on the canvas, or click on the Zoom Out button.

As mentioned in The Time series Toolbar, clicking on the Thread Pinning Points checkbox causes

green and red dots to appear overlaid on the screen as follows:

Clicking on a green dot causes the reason for the thread pinning request to appear:

PVTM User’s Guide Page | 92 Copyright © 2016
Pontus Networks

Clicking on a red dot causes the normalized thread pinning strategy that was applied at that point

in time to appear inside a The Offline Simulator Window

Selecting on Total CPU % causes the green time series with total CPU Util across all monitored

threads to appear (note that this causes the green dots to disappear):

PVTM User’s Guide Page | 93 Copyright © 2016
Pontus Networks

The Preview Area

The preview area is located right below The Time Series Canvas. It enables users to see changes

in status between two points in The Time Series Canvas. The Preview Area is almost identical in

functionality to The Offline Simulator Window, with the key difference being the Software Tab

behaviour. To avoid repetition, we will focus only on the Software Tab behaviour here, and cover

the functionality of the other tabs in The Offline Simulator Window.

The first time a user clicks on a point in The Time Series Canvas, all the threads will appear as

New Threads, with a square icon. As soon as a different point is clicked, the GUI will calculate the

deltas from the previous point, and display the icons using the following convention:

 Squares – new threads that did not exist in the previous score

 Circles – threads that had 0 changes from the previous score

 Stars – threads that moved from one core to another on the previous score

 Triangles Pointing up – threads that stayed in the same core, but increased CPU

utilization from the previous score

 Triangles Pointing down - threads that stayed in the same core, but decreased CPU

utilization from the previous score

Users can filter out which icons to see by Clicking on the

Filter Button in the bottom left. When clicked, the

following pop-up window in the left opens. This allows

users to filter not only the icon shapes, but also the links

between threads:

 Lines (Visible) – this shows only the lines for the

threads that are visible after the shape filters are

applied.

 Lines (New) – this shows only the new lines that

appeared since the last score was clicked.

 Lines (All) – this shows all the lines, and adds

any missing threads filtered out by the filters

above.

 Lines (None) – this suppresses all the lines.

Next to the filter button, the "node regex search" text

box allows users to search for any of the text that appears as a tooltip text when hovering on top

PVTM User’s Guide Page | 94 Copyright © 2016
Pontus Networks

of a thread (e.g. thread names, core numbers, CPU utilization), or for specific thread shapes. To

search for a specific set of shapes, users should type 'shape:' followed by a regex that matches

one or more particular shapes (e.g. shape:square|star will zoom into view either stars or

squares). Whenever the user hits <Enter>, the search is repeated, and the next match is zoomed

into view and centred.

The five buttons on the lower right-corner control the zoom and layout of the canvas:

 The layout button next to the minus button has 3

different states that move the threads into different layout

modes; note that the transition between the Vertical and

Horizontal layout goes through the cosmos layout (e.g. if

the user clicks on the Vertical Core layout button, it turns

into the Cosmos button; clicking then again on the Cosmos

button changes it to the horizontal layout button):

o Cosmos layout - scatters all the threads using

physics without observing the thread core position

o Vertical Core layout - aligns all the threads in

columns grouped by the current thread core location (e.g. threads in core 0 go in

the first column on the left, core 1 in the next column, etc.).

o Horizontal Core layout - aligns all the threads in rows grouped by the current

thread core location (e.g. threads in core 0 go in the first row on the top, core 1 in

the next row, etc.).

 The Plus and Minus Buttons zoom the canvas in and out

 The Play button starts an animation; once clicked, it because the Pause button. The

Pause button stops animations, and once clicked becomes the Play button again.

The Data Analysis Preview Area

When users click on the Analyse Data Button, the PVTM GUI will analyse the data for each of

the points shown in the time series, and find events that may impact application performance.

Note that only the data points displayed are analysed, so if using a large time period, only the

peak values are displayed. To get more details, simply zoom into the time series whilst in Thread

Manager mode, and click on the Analyse Data Button again. When users click the Analyse Data

 Button, the PVTM GUI replaces the normal Thread Manager Preview Area with the Analyse Data

Preview Area.

NOTE: To return back to the Thread Manager Mode, click on

PVTM User’s Guide Page | 95 Copyright © 2016
Pontus Networks

the left-most button at the top toolbar:

The Data Analysis Preview Area has three main tabs, and a special "Select Thread Data to be

Plotted" combo box that enables users to visualize per-thread data:

Summary Tab

The Summary tab has a simple grid with two columns; the first colum is a Red Amber Green (RAG)

status for the environment, and the second column has a summary of the events for the current

time period chosen. The following events are currently analysed:

 Core Oversubscription - this event indicates how many cores within the whole sampling

period in the time series had more than one active thread running (an active thread is a

thread with more than 0% CPU utilization). Cores that are oversubscribed cause

performance issues in an application, and should be avoided at all costs.

 Threads Created - this event shows how many threads were created during the whole

sampling period in the time series. Applications that have too many threads being created

can suffer from performance issues. If at all possible, it is recommended to use fixed

thread pool sizes.

 Threads Destroyed - this event shows how many threads were destroyed during the whole

sampling period in the time series. Applications that have too many threads being

destroyed can suffer from performance issues. If at all possible, it is recommended to use

fixed thread pool sizes.

Events Tab

The Events Tab shows detailed events within the time series above, showing the timestamp when

each individual event occurrred.

PVTM User’s Guide Page | 96 Copyright © 2016
Pontus Networks

Threads Tab

Lastly, the Threads Tab shows useful information about the threads during a period of time. The

colums are sortable by clicking on the column header. The following columns are available:

 Thread ID - shows the Operating System's thread ID

 Description - in Operating Systems that support thread names, the names will be

displayed. In Operating Systems that do not support this feature, the thread ID appears

again in parenthesis.

 Start Time - the time within the currently shown time series when the thread first

appearred.

 Run Time (ms) - the amount of time within the time series that the threads were running.

This is only accurate to the time series's sampling period, which is by default 2-10

seconds.

 Max/Avg CPU - the max/average CPU utilization for the thread during the time series's

time period.

 Num Oversubscribed cores - the number of times this thread was active (with more than

0% CPU utilization), and was also running in the same core as other active threads. If this

number is larger than zero, it indicates an enviroment where thread pinning may not be

very efficient unless the following option is set to a value higher than 0:

pvtm_agent_run_config_apply_pinning_per_thread_merge_last_n_solutions

 Max/Avg TLB Misses - this shows (only on Linux-based agents) the number of times a

thread was trying to read memory, and it failed to find it in the translate lookaside buffer

(TLB). Note that this is an aggregated figure; the PVTM GUI will add all the performance

counter time series that have the token TLB in them. Whenever a TLB miss occurs, the

performance of the thread is severely affected. This can be improved by increasing the

page size on the machine (e.g. on Linux, run the following commands as root:

vm.nr_hugepages = 10240

vm.nr_hugepages_mempolicy = 10240

and (if using java), setting the following JVM flags: -XX:LargePageSizeInBytes=2m \

-XX:ReservedCodeCacheSize=320m \

-XX:+UseLargePages \

 Max/Avg Cache Misses - this shows (only on Linux-based agents) the number of times a

thread was trying to read memory, and it failed to find it in a local cache (level 1, 2 or 3).

This can impact performance of applications, and can be impacted if the operating system

scheduler moves a thread from one core to another. Note that this is an aggregated

figure; the PVTM GUI will add all the performance counter time series that have the tokens

L1 and LLC (last level cache) in them.

 Details - clicking on this button this takes the current thread, and adds it as a filter to the

"Select Data To be Plotted" combo box. This then allows users to add thread-specific time

series to the graph above.

PVTM User’s Guide Page | 97 Copyright © 2016
Pontus Networks

Select Thread Data to be Plotted

This combobox enables users to quickly search (by typing on the text field), and select various

data points for all the threads currently introspected. Clicking on the checkboxes immediately

adds the time series to the graph area.

To clear individual entries, uncheck the checkbox; to clear all time series, click on the clear all

button to the right of the checkbox.

Note that the types of time series available to plot depend on the operating system, as well as on

the pvtm_agent_app_thread_perf_counter_events_csv setting in the respective PVTM Agent's

configuration file. Here's a quick example of a chart comparing different L1 cache misses for two

threads:

PVTM User’s Guide Page | 98 Copyright © 2016
Pontus Networks

This data is extremely useful to troubleshoot performance problems. Keep in mind that the values

may have very different orders of magnitude, so users can always zoom in vertically by dragging

the mouse across the canvas and unclicking to zoom into the shaded area:

Here is the zoomed-in version of the picture above:

NOTE: to zoom out, double click on an empty part of the canvas.

Thread Cores Button

The Thread Cores Button takes the top 10 threads listed in the Threads Tab grid, and shows

their core position in the time series. This is a toggle button; when pressed, the graph's y -axis is

capped at the number of cores + 30%, and 10 time series are added to the existing time series.

When the button is untoggled, the time series axis are reverted back to normal, and the time

PVTM User’s Guide Page | 99 Copyright © 2016
Pontus Networks

series with the core numbers are removed. This view is invaluable to show clients how much, or

how little the threads move. A well-behaved system will tend to have 'guitar string'-like lines:

In contrast, here is an example of free-flowing threads jumping between cores without thread

pinning in place:

The Configuration Preview Area

The configuration Preview area has two tabs and a toolbar

The Options Grid Tab

The options grid shows a read-only grid with the latest set of options displayed. Depending on

when the Refresh button is pressed, new options appear in green, and values that were modified

in red.

PVTM User’s Guide Page | 100 Copyright © 2016
Pontus Networks

The Raw Text Editor Tab

The raw text editor enables users to edit the configuration. Hitting CTRL+Space brings a pop-up

combo box with all the valid option names (see pvtm.cfg Configuration File for more details).

The Configuration Preview Toolbar

The configuration Preview Toolbar enables users to import external configuration files, deploy

configurations to the current PVTM Agent, or to load the current configuration in the agent. The

Refresh button enables users to refresh the options grid with the latest values from the raw text

editor. When users press the Refresh button, the grid will show optons that did not change in

black, new options in green, and options that changed in red.

PVTM User’s Guide Page | 101 Copyright © 2016
Pontus Networks

The Offline Simulator Window

The Offline Simulator Window has most of the same functionality as the Preview Area; whenever

the Preview checkbox is unchecked, it pops up in a separate window.

The Offline Simulator Window can perform three main functions: Monitoring, Simulation, and

Deployment. If the Offline Simulator Window is started by clicking on one of the blue dots in The

Time Series Canvas, it starts in Monitoring mode. If, however it is started by clicking on the

Thread Manager button in the Thread Manager Navigation tab, the Offline Simulator Window starts

in a pure Simulation-mode, where users can use custom-built widgets to run hypothetical what-if

analysis in the system. The following sections show how each of these functions work, within each

of the main Window Parts:

Offline Simulator Window Parts

The Offline Simulator Window has three main areas: the Thread Pinning Layout Toolbar, the

Thread Pinning Layout Tabs, and the Hardware and Software Components Tree.

Thread Pinning Layout Toolbar

 Run – starts an off-line simulation for X seconds (default 30)

 Stop – stops a currently running simulation

 Deploy – sends the current thread pinning layout in The Solution Tab to the relevant

PVTM Agent for immediate effect. This forces the simulation to be applied immediately.

PVTM User’s Guide Page | 102 Copyright © 2016
Pontus Networks

Note that this allows users to even send a manually-created thread pinning strategy to

PVTM Agent. The PVTM Agent is always the one associated with the current Offline

Simulator Window's original Time series graph.

 Time textbox– determines the number of seconds to run a simulation (defaults to 10

seconds).

 Double Chevron – expands the toolbar to enable users to select less

common actions:

 Randomize checkbox – if clicked, randomizes the initial placement

of threads in cores when running a new simulation. This is useful

for larger models if threads are getting stuck in local optima.

 Clear Last checkbox – clears the last layout and uses one of the

initial phase algorithms to place the threads on cores initially.

 Save – allows users to save a copy of the current simulation

results as scripts that can start applications on the right set of

threads.

 Save as – same as save, but if a new copy is required

 Open – open a previously saved simulation

 Clear – clear the current simulation information

 Advanced Items - allows users to control some of the simulation parameters

(See Thread Execution Layout Simulation for more details)

Hardware and Software Components Tree

The Hardware and Software Components Tree are located to the left of the Thread Pinning

Window, and can either appear in a collapsed format (when in monitoring mode), or in expanded

format (when in simulation mode).

If in collapsed format, it can

be expanded by clicking

on the small arrow

below the Thread

Pinning Layout Toolbar

(as seen on the figure

on the right).

If in expanded format,

it can be collapsed by

clicking on the arrows next

to the red border between the

Hardware and Software Components

Tree and the Thread Pinning Layout

Tabs (as seen on the figure on the

left). When running in expanded

mode, clicking on the hardware or

software parts of the tree will

automatically choose the Hardware

or Software tabs.

PVTM User’s Guide Page | 103 Copyright © 2016
Pontus Networks

Thread Pinning Layout Tabs

The Thread Pinning Layout Tabs show different types of tabs depending on which mode is currently

active.

If users click on one of the lines in The Time Series Canvas, this window starts in monitoring

mode, displaying the current state of the environment at a particular point in time. When in

monitoring mode, the window has 4 main tabs: The Hardware Tab, The Thread Layout Tab, The

Solution Tab, and The App Links Tab.

Hardware Tab

The Hardware Tab allows users to view the current hardware profile picked up by the relevant

PVTM Agent, including the latest values for the following options that control simulation behaviour:

 pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_mins_json_array

 pvtm_agent_link_proto_weights_un_i4_i6_ld_pf_lk_sm_maxs_json_array

 pvtm_agent_context_switch_cost

PVTM User’s Guide Page | 104 Copyright © 2016
Pontus Networks

 pvtm_agent_junk_cores / pvtm_agent_junk_cores_json_array

Users can modify the values of some of these options and re-run ad-hoc simulations (by clicking

on the Run button in the Thread Pinning Layout Toolbar) to experiment how these values impact

the simulation results.

This view can also be used to simulate running the current software layout on different types of

servers. This is extremely useful for capacity planning, as users can test the suitability of a new

hardware platform, (including servers which are not yet available for sale), for applications before

issuing a purchase order. To achieve this, users should expand the Hardware and Software

Components Tree (if not already expanded), open the Hardware branch of the tree, and drag and

drop one of the hardware entries into the canvas, and click on the Run button to re-run the

simulation:

PVTM User’s Guide Page | 105 Copyright © 2016
Pontus Networks

Thread Layout Tab

The Thread Layout tab allows users to introspect inter-processor communications links between

software threads in an easy-to-understand graphical format. Squares represent application

threads, and lines different types of inter-thread communication mechanisms, or App Links. The

larger the size of the square, the higher is the CPU utilisation for that thread. The squares are

colour-coded to match the application or process they belong to. Interrupt ReQuests (IRQs) are

denominated as squares that have a negative Process ID. The thickness of the lines denotes the

amount of data flowing between two threads through a particular App Link.

Views of very complex applications can, at first glance, look confusing, due to the shear amount of

lines and threads shown in the graph, but zooming in provides detailed information about the

specific threads and links, including the following details:

Threads / IRQs

 CPU utilization

 thread id or interrupt number if a negative number

 thread name

App Links

 Type of IPC link, (socket, shared memory, named pipe, mutex, futex lock)

 Source and destination ports

 Data transfer in bytes

This tab can sometimes take a few seconds to render, especially if the system has a large number

of threads and links. Clicking on the Pause button on the bottom right will pause the rendering

engine and may speed up the display. Here is a quick description of how to navigate on this tab:

 Zoom in/out by scrolling or clicking on the / buttons

PVTM User’s Guide Page | 106 Copyright © 2016
Pontus Networks

 Pause/play button stops or starts the physics-based animation

 Fit to size button makes all threads appear on the screen

 Search textbox a regex that finds a thread by name or id, and zooms into its location

 Cosmos or Hierarchical mode buttons arrange the threads in a free-form cluster, or

separate threads by the cores where they are running, aligning all threads running on the

same core in rows or columns.

For more details, please see section titled "The Preview Area".

When starting the Offline Simulator Window in simulation mode (by clicking on the Thread

Manager button in the Thread Manager tab in the Main Canvas 's Navigation), the Software Tab

appears differently, enabling users to drag and drop custom-built widgets (see The Design

Components Window):

PVTM User’s Guide Page | 107 Copyright © 2016
Pontus Networks

The Solution Tab

The Solution tab shows users a grid with the thread layout across the various cores in the system.

The grid columns show each software process monitored by PVTM Agent. The grid Rows show the

CPU cores of the hardware platform. The Threads are the light blue widgets inside the grid. By

double-clicking on a core name, (highlighted in BLUE), users see which cores are closest to it,

(highlighted in GREEN) and which are in remote NUMA zones, (highlighted in AMBER or RED).

Double-clicking any core name again clears the colour coding.

Users are also able to drag and drop threads from one core to another. This results in an

immediate change to the Score, and is valuable to developers as a sanity check of the thread

layout.

Double-clicking on the application column headers forces the grid to only show cores where the

application threads are currently allocated. Double clicking the heading again will show the whole

grid again.

Users can also search for any string within the thread description by typing it in the textbox

labelled 'Search the thread names', and clicking on the search button . The regex will try to

match the text from any of the columns displayed. Clicking on the clear button clears the filter,

and displays the whole table again.

If PVTM Agent is running with root privileges, then a number of cores can be set aside as, "junk

cores" (see pvtm_agent_junk_cores). These appear in grey with the word (JUNK) next to the core

number. Junk cores are used to run applications that do not match the

pvtm_agent_regex_pattern. These typically include PVTM Agent itself, monitoring software, and

any other processes, that are not performance critical. This reduces interference with the key

application/s being optimized.

PVTM User’s Guide Page | 108 Copyright © 2016
Pontus Networks

The App Links Tab

The App Links tab, provides the same information as the Thread Layout Tab, but in an easy-to-

read tabular format. It allows users to filter out unnecessary links or software threads by typing

regex strings in the top left text box labelled 'Search the Links', and clicking on the search button

. The regex will try to match the text from any of the columns displayed. Clicking on the clear

button clears the filter, and displays the whole table again. Users can also click on the column

headings to sort the table.

When starting the Offline Simulator Window in simulation mode (by clicking on the Thread

Manager button in the Thread Manager tab in the Main Canvas's Navigation), the App Links tab

currently does not appear.

PVTM User’s Guide Page | 109 Copyright © 2016
Pontus Networks

The Remote Control Window

This window enables users to select a set of agents, query their status (using the refresh

button), or activate / deactivate / reset PVTM Agents dynamically. In addition, the

Configure Button enables configurations to be pushed to multiple PVTM Agents. The search

button uses the regex filter in the textbox to its left, whereas the clear button clears out the

filter. Only the current list of agents (filtered or otherwise) will be affected by the

activate/deactivate/reset/configure commands. Inactive agents never automatically apply thread

pinning strategies.

The Configure Menu

Clicking on the Configure Button brings up a

pop-up menu similar to the one on the right

with the following items:

 Select a configuration to send - This

combo box shows the last 1024

configurations that were sent to PVTM

Agents.

 The Preview checkbox shows a preview

of the configuration in the bottom half

of the PVTM Agent Control window.

 The Enter config description textbox

allows users to enter a description for

the changes being made.

 The Agent Deploy button pushes the

configuration to the current list of agents (filtered or otherwise).

PVTM User’s Guide Page | 110 Copyright © 2016
Pontus Networks

The Configuration Preview

The configuration preview panel appears when the Configure Preview checkbox is checked. This

enables users to edit the configuration before sending it out to the current list of agents in the

PVTM Agent grid above (filtered or otherwise). Once done editing, users can click on the Agent

Deploy button to deploy the existing configuration. Note that this will cause PVTM Agents to

disconnect and connect again.

PVTM User’s Guide Page | 111 Copyright © 2016
Pontus Networks

The Design Components Window

The Widgets Window is composed of 3 elements: The Hardware and Software Components Tree,

the Component JSON Editor, and the Preview Canvas.

The Hardware and Software Components Tree

The Hardware and Software Components tree allows users to create new hardware or software

widgets that are available for users to use in the Hardware and Software Components Tree in The

Offline Simulator Window. This element has the following parts:

PVTM User’s Guide Page | 112 Copyright © 2016
Pontus Networks

 Hardware Components Tree – allows users to create new hardware components by right

clicking and selecting 'add child' or 'add peer'.

 Software Components Tree – allows users to create new software components by right clicking

and selecting 'add child' or 'add peer'.

 Menu/Toolbar allows users to manipulate the Component Trees:

o Edit Menu – allows users to change the component name

o Delete deletes a component

o Copy/Paste do as they say

o Export - allows users to export the components to an external file

o Import - allows components to be imported back in.….

Component JSON Editor

The Component JSON Editor allows users to enter the JSON definition of either software or

hardware components (see SET_COMPUTER and SET_APPS for more details). To use this, users

must click on an existing software or hardware component from The Hardware and Software

Components Tree.

Preview Canvas

The Preview Canvas is located to the right of The Hardware and Software Components Tree allows

users to drag and drop components from the Hardware and Software Components Tree to preview

the icons. Note that currently, only built-in icons are supported; the icons are derived from the

"Type" field in the Component JSON definition.

PVTM User’s Guide Page | 113 Copyright © 2016
Pontus Networks

Changing the Password

To change the current user's password, click on the Top Toolbar's Users Icon . That will open

the window above prompting for the current password, as well as the new one. To cancel this,

click on the X on the top right corner.

Updating the License

To check the current license's details, and to update the license key, users can click on the the

Top Toolbar's Information Icon . That will open the window above showing the current license

information. Clicking on the Update License button brings up a file manager -style dialogue box

prompting the user to select a new license file.

PVTM User’s Guide Page | 114 Copyright © 2016
Pontus Networks

Command Line

PVTM GUI uses the same jar file as the PVTM Simulator. The command line is under the

<installation directory>/4.7.0/ folder. The windows version is in the run-gui.bat file, whereas the

Linux version is in the run-gui.sh file. Normally, the installer fills out the contents of these files,

but in certain circumstances, they need to be manually edited. Here is a list of the main command

line arguments:

 -Xmx2048m

This controls the maximum memory size of the Java Virtual Machine; this value this value

should be approximately 500MB-1GB per agent being monitored.

 -javaagent:/home/leo/pontus-vision/4.7.0/linux/pvtm-agent.jar

This optional command line argument exposes java thread names to the OS (on Linux

only)

 -Dpv.threadmgr.configFile=""

This option allows an optional configuration file to be passed to PVTM Simulator to control

the simulator's behaviour; this option should only be used after engaging with Pontus 's

professional services team.

 -Dpontusvision.threads.in.levels=true

This option determines whether or not to display the threads that belong to the same

application in levels (see Thread Layout Tab for more details)

 -Dpontusvision.clean_background.enabled=false

This option enables or disables the background picture with the big 'PontusVision Eye'.

Setting this to true uses a clear white background. This can be useful if running the

browser pointing to the PVTM GUI in a remote desktop with low bandwidth.

 -Dpontusvision.static_web_files_location="C:\Users\L\pontus-

vision\4.7.0\web"

This option determines the location of web files serviced by the clear-text http_port

 -Dpontusvision.keystore="C:\Users\L/.keystore_pontusvision"

This option determines the location of the key store used by the PVTM GUI to encrypt https

connections

 -Dpontusvision.http_port=8080

This option determines the clear port used by the PVTM GUI to service static files

 -Dpontusvision.https_port=8443

This option determines the encrypted port used when accessing the PVTM GUI from a

browser (e.g. https://<server>:<pontusvision.https_port>)

 -Dpontusvision.data.jdbc.url="jdbc:h2:C:\Users\L/pontusvision"

This option determines the URL for the static Database files used by the PontusVision

framework to store templates and saved thread pinning strategies.

 -Dpontusvision.audit.jdbc.url="jdbc:h2:C:\Users\L/auditDb"

This option determines the URL for the static Database files used to maintain an audit trail

of actions in the PVTM GUI.

 -Dpontusvision.reindex_text_search=true

This option determines whether or not the PVTM GUI should re-index all the stored

template and attributes text so the search functionality works.

 -Dpontusvision.license.info="PontusVision.*"

This option selects the license information for PVTM Simulator. This value is customer -

specific, and is typically entered as part of the installation process.

 -Dpontusvision.license.holder="o=temp,ou=license,cn=test123"

This option selects the license key information for PVTM Simulator. This value is customer -

specific, and is typically entered as part of the installation process.

PVTM User’s Guide Page | 115 Copyright © 2016
Pontus Networks

 -Dpontusvision.license.file="~/pontus-vision/4.7.0/license.lic"

This option selects the license file information for PVTM Simulator. This value is customer-

specific, and is typically entered as part of the installation process.

 -Dpontusvision.start_browser=true

This option determines whether or not PVTM GUI starts a new instance of the default

browser on Windows

 -Dpontusvision.data.replication_mode=""

This option determines the replication mode for the static Database used by PVTM GUI. An

empty string means standalone, whereas "primary" indicates a master instance running in

primary mode, and "backup" indicates a slave instance running in backup mode.

 -Dpontusvision.data.replication_url="tcp://localhost:61616"

This is the JMS URL used for the data replication between primary and backup instances.

 -Dpontus.agent.broker.name="tcp://localhost:61616"

This option controls the JMS Broker name used by PVTM Simulator to communicate with

PVTM GUI and send/receive dynamic commands to PVTM Agent. NOTE: This option is also

used as the JMS URL for the PontusVision Agent (NOT to be confused with the PVTM

Agent) to communicate with the GUI. The PontusVision Agent is only used to deploy

configuration files and start/stop processes remotely. It is a part of the PontusVision

framework, and is NOT REQUIRED for PVTM.

 -Dpv.threadmgr.to.gui.topic="pvtm.threadmgr.to.gui.topic"

This option controls the JMS Topic used to send data from PVTM Simulator to PVTM GUI.

 -Dpv.threadmgr.to.gui.topic="pvtm.threadmgr.from.gui.topic"

This option controls the JMS Topic used to send data from PVTM GUI to PVTM Simulator.

 -Dpontusvision.bpmn.enabled=true

This option turns on certain aspects of the Thread Management GUI. Do not touch this

option.

 -Dpvtm_history_prefix="/home/leo/pontus-vision/4.5.0/pvtm-storage/"

This option selects the folder where the embedded Elastic Search engine will store its data.

This should be a local disk with as much storage as possible.

 -jar "C:\Users\L\pontus-vision\4.7.0\vision-server.jar"

This option controls the name of the jar file used to start the PVTM GUI. Note that this is

the same jar file as the PVTM Simulator.

