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Abstract 

Expecting a new  user to optimise a Hadoop platform is similar to expecting somebody to be able to tune a guitar 

the f irst time he picks it up: it is not going to happen.  Imagine being able to get optimum performance from your 

Hadoop system, as a musical virtuoso such as Dave Gilmour or Jeff Beck might get from a Gibson Les Paul or 

Fender Strat’ w ithout the years of practise.  

 

This w hite paper show s how  an automated thread manager improved Hadoop throughput performance 

ranging from 65% to a staggering 241%.  It also show s that hyperthreading had a signif icantly negative impact 

of nearly 10%.  The test harness used w as YCSB using Hadoop's HBase, Zookeeper and HDFS in a single host, 

and the technology used for the thread manager, as w ell as the time series graphs w as PVTM. 

  

To illustrate the normal scheduler behaviour versus the automated thread manager, w e have produced time 

series graphs w ith the core location over time of the busiest softw are threads.  This show s how  long they remain 

on the same processor cores (w hich is the most eff icient for performance), or are moved from core to core by the 

scheduler.  When the scheduler moves threads, it causes a dramatically negative impact on performance (see 

section "How  much delay in a single server?" for more details) 

 

So, w hy the guitar analogy, you may ask.  Similar to the fret on Figure 1
1
, Figure 2 show s that a time series graph 

w ith eff icient thread management looks like the strings on a guitar neck.  The y-axis on the left show s the core 

number of each thread.  The parallel lines on the graph denote a high level of thread aff inity by pinning over time; 

the jagged green time series on the top show s the total CPU utilization w ith the scale on the right y-axis 

 
Figure 2 - Guitar strings time series w ith thread positions over time . 

 

                                                             
1 Picture from http://www.dingwallguitars.com/wp-content/gallery/prima-artist-gallery/dingwall -prima-artist-esize.jpg,  
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15891935  

Figure 1 - Fanned Fret Bass Guitar By Sheldon Dingwall 
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In contrast, the jagged lines in Figure 3 show  the operating system scheduler moving threads from one core to 

another.  This not only pollutes the data caches, but also the translate lookaside buffer (TLB) cache, w hich is a 

directory of virtual to physical memory addresses. 

 

 
Figure 3 - Threads moved by the OS appear as jagged lines. 
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YCSB, Yahoo Cloud Serving Benchmark 

The Yahoo! Cloud Serving Benchmark  (YCSB) is an open-source specif ication and program suite for 

evaluating retrieval and maintenance capabilities of computer programs.  Testers often use it to compare relative 

performance of NoSQL database management systems.  

Yahoo! developed and released the original benchmark in 2010 w ith the goal of comparing performance of the 

new  generation of cloud data serving systems, such as BigTable, PNUTS, Cassandra, HBase, Azure, CouchDB, 

SimpleDB, and Voldemort.  YCSB is included in the major Hadoop distributions of Cloudera, MapR and 

Hortonw orks, and this makes it ideal as a benchmark to test Hadoop hardw are setups and is w hy it w as used to 

measure the benefits of automated thread pinning w ith PVTM.  

 

The follow ing URL has further details on YCSB: 

https://www.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf 

Hadoop 

Hadoop or the Hadoop ecosystem, w hich includes a grow ing number of components (e.g. map/reduce, Spark, 

Yarn, HBase, Impala), is becoming the standard framew ork for large scale, or “Big Data” analytics.  Originally , 

Google and Yahoo developed Hadoop for internet-scale analysis.  Now , most major enterprises as w ell in 

government research laboratories, universities, retailers, and hospitals are using Hadoop to analyse large-scale 

unstructured data. 

 

Such is the groundsw ell of support and interest in Hadoop that many of the proprietary data analysis vendors, 

such as Informatica, IBM, Teradata, and Syncsort are offering integration of Hadoop components w ith their 

existing analytics packages. 

Objectives 

The main objective of this w hite paper w as to determine w hether YCSB benchmark results using HBase on top of 

the Hadoop Distributed File System (HDFS) could get increased throughput from an automated thread manager.  

As w e w ere running the tests, w e also measured the impact of  the follow ing environmental changes on the YCSB 

throughput: 

1. hyperthreading (on Sandy Bridge),  

2. the impact of automatic thread management on a freshly built Broadw ell server tuned to save pow er.   

The secondary objective of the w hite paper w as to make the tests easily reproducible.  To do so, w e performed 

all the tests in a single server hosting both a stand-alone version of HBase (version 0.98), w ith embedded 

Zookeper and HDFS instances, as w ell as the YCSB client.  Lastly, because disk performance may vary from 

environment to environment, w e ran the tests using a tmpfs-mounted drive; this should be easily reproducible on 

any server, and should display similar performance characteristics to the SUTs used here. 
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Test Cases Summary 

Table 1 show s a summary of the six test cases w e ran to produce this w hite paper: 

 
Table 1 - Summary of Test Cases 

Test ID SUT Intel 

Micro-architecture 

Hyper 

Threading 

Server manually 

tuned for 

performance 

Thread 

Manager 

(PVTM) 

Overall 

Throughput  

(avg of 5 tests) 

T-001 Sandy Bridge (E5-2680) Enabled Yes Disabled 3987.30 

T-002 Sandy Bridge (E5-2680) Disabled Yes Disabled 4365.28 

T-003 Sandy Bridge (E5-2680) Disabled Yes Enabled (v23) 5305.21 

T-004 Sandy Bridge (E5-2680) Disabled Yes Enabled (v24) 6596.51 

 

T-005 Broadw ell (E5-2650 v4) Disabled No (Fresh Install) Disabled 2090.80 

T-006 Broadw ell (E5-2650 v4) Disabled No (Fresh Install) Enabled (v24) 7134.89 

 

Here is a brief description of Table 1's columns: 

 The f irst column has a test identif ier, w hich is used to track the test cases throughout this document; 

 The second column has the microarchitecture of the system under test (SUT) ; the Sandy Bridge 

processor w e tested (E5 2680) w as launched in March 2012, w hereas the Broadw ell processor (E5 

2650 v4) w as launched in April 2016;  

 The third column show s w hether or not hyperthreading w as enabled in the platform; Hyperthreading 

enables cores to run parallel threads of code sharing the same level 1 cache; 

 The fourth column show s w hether or not the system administrator applied any previous manual tuning to 

the system;  

 The f if th column show s w hether the Pontus Vision Thread Manager (PVTM) w as enabled, and w hich 

version w as running (as seen in the results, the new  version 4.7.0.24 has dramatic performance 

improvements). 

 Lastly, the sixth column has the average overall throughput over f ive runs for each test case.  Table 2 

show s the full set of throughput f igures reported by YCSB for each of the tests, w hich w ere used to 

calculate the sixth column in Table 1: 

 

Table 2 - Full set of test results across all 5 runs for each test case  

Test Case Average Run 1 Run 2 Run 3 Run 4 Run 5 

T-001 3987.30 4656.73 3822.06 3654.58 3797.29 4005.85 

T-002 4365.28 4165.00 3991.67 4883.58 4174.46 4611.72 

T-003 5305.21 5344.91 5206.76 5275.79 5321.16 5377.41 

T-004 6596.51 6540.39 6664.53 6617.48 6619.01 6541.12 

T-005 2090.80  2352.11 2056.16 1819.38 2031.86 2194.48 

T-006 7134.89 7278.97 7099.15 7022.67 7129.11 7144.54 

 

 

The baseline test T-001 on the Sandy Bridge server started w ith hyperthreading enabled, but this yielded poor 

results, so all other tests had hyperthreading disabled.  Unfortunately, w e did not have time to run hyperthreading 

tests in the Broadw ell platform to see w hether there are any improvements in behaviour w ith a new er platform.   

Disabling hyperthreading on the Sandy Bridge platform improved performance by 9.5% w hen compared to test 

case T-002's results.  Note that w e used PVTM to do a 'soft-disable' of the hyperthreads, making them 'junk 
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cores' rather than physically sw itching them off on the BIOS.  On previous tests, w e have noticed that this has the 

same effect as changing the BIOS settings, w ith the advantage of not requiring a system administrator to log into 

the server's LOM interface and reboot the server. 

 

Test cases T-003 and T-004 show  the impact of an automatic thread manager on system performance.  Test 

case T-003 show s the impact of running version 4.7.0.23 of PVTM to manage threads, w hich increased 

performance by 21.5% w hen compared to T-002, and by 33.5% w hen compared to T-001.  Similarly, T-004 

show s that the latest version of PVTM (4.7.0.24) had an even bigger performance boost of 51.11%, or, w hen 

compared to T-001, a 65.44% performance boost.  The key difference betw een PVTM versions .23 and .24 is a 

new  mechanism that PVTM uses to highlight the busiest I/O threads in the system.  This enables PVTM to 

quickly identify and move the most relevant I/O threads as close to each other as possible, resulting in massive 

performance boosts; the only dow nside of this new  technique (w hich can actually be sw itched on or  off) is 

increased CPU utilization; how ever, the results are w ell w orth the cost. 

 

The most staggering improvements were the 241% betw een the freshly installed Broadw ell system on test 

cases T-005 and T-006 w ith and w ithout PVTM 4.7.0.24.  This show s how  PVTM can have a massive impact on 

a fresh installation w ithout requiring any experience to tune the system.  This 'freshly installed' state of the server 

is quite common in the industry, w here system administrators build servers to reduce operational expenditure 

(OpEx) by conserving pow er during idle periods.  Though this w orks w ell for idle systems, the dow nside is a 

dramatic impact in performance w hen the systems are used.  When users have long-running jobs, the extra 

241% of time it takes to run the w orkload often negates the idle pow er savings, costing more in OpEx.  

Nevertheless, this configuration reflects the state of several data centres that have general-purpose servers. 

 

System Under Test 

The follow ing sections describe the softw are configuration as w ell as the hardw are details of the SUT for the six 

test cases 

Test Harness Configuration: 

To setting up the tmpfs partitions, w e added the follow ing entries to the /etc/fstab f ile: 

tmpfs /tmp tmpfs defaults,noatime,nosuid,nodev,mpol=local,mode=1777,size=10G 0 0 

tmpfs /home/ycsb/hbase/  tmpfs 

defaults,noatime,nosuid,nodev,mpol=local,mode=1777,size=10G 0 0 

And then w e executed the follow ing commands (as root): 

mount -a  

chown -R ycsb:ycsb /home/ycsb/hbase 

The first line ensures that the /tmp directory is mapped into memory, and the second line ensures that the 

/home/ycsb/hbase directory is mapped into memory.  For convenience, the locations of the tmpfs memory areas 

w ere set to be local to the threads accessing them. 

 

The YCSB configuration and start-up scripts used for all six tests w as identical, here is the bash script used: 

 

for ((i=0;i<5;i++));   

do     

  sudo sysctl -w vm.drop_caches=3;     

 

  /home/ycsb/hbase-0.98.16.1-hadoop1/bin/start-hbase.sh;     

 

  sleep 60;    
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  /home/ycsb/ycsb-0.5.0/bin/ycsb run hbase098 -P /home/ycsb/ycsb-

0.5.0/workloads/workloadcustomread -jvm-args=-javaagent:/home/ycsb/pontus-

vision/4.7.0/linux/pvtm-agent.jar -cp /home/ycsb/hbase-0.98.16.1-

hadoop1/conf -p table=usertable -p columnfamily=family;  

    

  /home/ycsb/hbase-0.98.16.1-hadoop1/bin/stop-hbase.sh;   

 

done > ~/T-00x.out 2>&1 & 

 

Where: 

   ~/T-00x.out w as replaced w ith the relevant test ID (e.g. T-001.out). 

 

 

The YCSB w orkload configuration w as set as follow s: 

[ycsb@fsl-0032 ~]$ cat /home/ycsb/ycsb-0.5.0/workloads/workloadcustomread 

recordcount=1000 

operationcount=1000000 

workload=com.yahoo.ycsb.workloads.CoreWorkload 

 

readallfields=true 

 

readproportion=0.5 

updateproportion=0.5 

scanproportion=0 

insertproportion=0 

 

requestdistribution=zipfian  

 

 

Hardware Details 
 

The specif ication of the system under test for test cases T-001 to T-004 w as the follow ing: 

2 x E5-2680 (20MB Cache, 2.7 GHz) 8-cores per CPU socket (launched in March 2012) 

Memory - 64 GB - 1333 MHz (8GB modules) 

Operating system, RHEL 7.2, release 7.2.1511 (Core) 

N.B.  This system under test was kindly provided by Intel Corporation 

 

 

The specif ication of the system under test for test cases T-005 and T-006 w as the follow ing: 
Super micro SYS-6028TP-HTR, dual socket, TWIN Square server, w ith Broadw ell chipset 

2 x E5-2650 v4 (30MB Cache, 2.20 GHz) 12-cores per CPU socket (launched in April 2016) 

Memory - 128GB - 2133 MHz (16GB modules) 

Operating system, RHEL 7.2, release 7.2.1511 (Core) 

N.B.  This system under test was kindly provided by XMA Ltd, w w w .xma.co.uk 
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Test Results Details 

The time series graphs on the next page show  the thread layouts during the entire runtime of test cases T-001 to 

T-004.  The jagged lines of the tw o graphs (Figure 4 and Figure 5) reflect the normal Linux scheduler behaviour 

w ithout a thread manager.  This show s threads moving to different cores, w hich causes several tiny delays over 

the total test run.  

 

 

 

 

 

 

In contrast, Figure 6.and Figure 7 show  how  PVTM creates smooth parallel lines.  This “guitar string” pattern 

maintains much better thread-to-core aff inity, w hich delivers low er latency.  The main reason for the performance 

boost is a reduction in context sw itching, w hich causes translate look-aside buffer (TLB) and cache misses.  This 

enables the threads to focus more on the current tasks rather than having to w aste time finding previously 

cached memory addresses through TLB misses, and re-fetch data from slow  remote locations through cache 

misses.  The right hand-side axis on these time series also show s the CPU utilization of all the threads in the 

process.  Comparing f igures 5 and 6 show s an increase of around 200% CPU utilization betw een the tw o tests.  

At f irst site, this may seem high; how ever, in the Sandy Bridge SUT that only represented around 15% of 

difference in increased pow er consumption (from 100 to 115 w atts) -- w ell w orth the added performance boost. 

 

 
Figure 6 Thread Positions over time for T-003 (5305.206 ops/sec - T-001 baseline gain = 33.05% 

Figure 4 Thread positions over time for T-001  (3987.301 ops/sec)   

Figure 5 Thread positions over time for T-002 (4365.283 ops/sec - T-001 baseline gain = 9.48%) 
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Figure 7 Thread Positions over time for T-004 (6596.506 ops/sec - T-001 gain baseline gain = 65.44% 

 

As the next section w ill show , the "guitar string" patterns of thread management amount to many improvements 

of tiny amounts of time.  The tiny delays that PVTM saves w ith thread management only last hundreds of 

nanoseconds to microseconds; at f irst, these seem negligible, how ever, as seen in the test results, their 

cumulative impact even over a few  minutes of tests is enormous.  The next section show s more details on how  

much delay there is in a single server. 

How much delay in a single server? 

Most people think that the delays inside of a single server are negligible; how ever, the cumulative effect of these 

delays is very large.  The speed at w hich threads communicate w ith each other can be over one hundred (100) 

times slow er depending on w hich cores they are running in a single server.  The relative distance betw een the 

CPU cores and their memory access affects how  quickly data can move betw een threads.   

 

Table 3 show s rough relative speeds of sending data betw een threads measured on a four CPU server.  This 

table reflects the access speed of memory in different cores, as w ell as the amount of time that it takes to re-fetch 

data from main memory if not cached.  Access speed is relatively fast w hen the CPU accesses data stored in 

level 1, level 2 and level 3 caches.  The access speed is slow er w hen the CPU accesses local memory, slow er 

w hen the CPU access remote memory from a neighbouring CPU, and even slow er w hen the memory is not in a 

local, but a remote neighbour w ithout a direct cross bridge.   

 
Table 3 - Distance Ratio Table 

Level 1 

Cache 

Level 2 

Cache 

Level 3 

Cache 

Local 

Memory 

Remote 

Memory 

No-Cross 

Bridge Memory 

1 2 6 10 83 113 

 

It is important to notice that these speeds can vary dramatically depending on the thread behaviour.  As such, 

applications w ill seldom alw ays run at the fastest speed or at the low est speed.  As the Intel Hasw ell stats below  

show , the time to access memory can vary from 4 cycles to access L1 to over 45 cycles plus around 57ns to 

access main memory.  If  a thread never moved, and alw ays accessed memory that w as w ithin the TLB and in L1 

cache, it w ould use around 4-5 cycles to access the data.  In contrast, a thread constantly being moved across 

cores (in the same CPU) w ould be missing L1/L2 cached data, having to go to L3 or main memory and having its 

translate lookaside buffer (TLB) trashed w ould use 36 cycles + 9 cycles + 57ns to access the data.  In reality, 

threads w ill never behave as perfectly as the 4-5 cycles 100% of the time; how ever, w hen threads are not pinned, 

they tend to be constantly in the misbehaved state.  By managing the location of threads, PVTM is trying to 

increase the chances of the good 4-5 cycle behaviour. 

 

Here are some stats for Intel’s Hasw ell processor: 

 L1 Data Cache Latency = 4 cycles for simple access via pointer 
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 L1 Data Cache Latency = 5 cycles for access w ith complex address calculation (size_t n, *p; n = p[n]).  

 L2 Cache Latency = 12 cycles 

 L3 Cache Latency = 36 cycles 

 RAM Latency = 36 cycles + ~ 57 ns 

 L1 Data TLB - miss penalty of 1-8 Cycles , w ith 4x1Gb/ 32x2Mb / 64x4Kb entries 

 L2 Data TLB - miss penalty of 9 -22 cycles w ith 1024 2Mb / 1024 x 4Kb entries 

 

Note that one cycle is equal to the inverse of the core's clock speed, so if a core is running at 2.2GHz, one cycle 

is 1 / 2.2GHz ~=  4.54 ns 

 

The next section explains at a higher level how  PVTM uses these various time constraints to f igure out the best 

location of the threads in a server.  

Pontus Vision Thread Manager (PVTM) 

PVTM speeds up softw are applications by better placing softw are threads onto hardw are cores to maximise 

performance.  A secondary advantage, (w hich is arguably as important), is that it provides a great insight of 

application behaviour.  PVTM is able to show  at any point in time w here threads w ere running, how  much CPU 

utilization they had, and w hich threads w ere communicating w ith each other.  For Java applications, PVTM also 

exposes the Java thread names to the operating system, providing even more clarity of w hat is happening w ithin 

the JVM. 

 

A large scale Hadoop analysis may take hours or days to run and, due to its resilient design, requires large 

numbers of physical servers; 100-1,000 servers is not uncommon, so the costs of using Hadoop are substantial 

and w ays of reducing the cost are of interest to all.  PVTM is an accelerator, so allow s you to either, run more 

analyses on your Hadoop infrastructure, or reduce the total number of servers and so make capital expenditure, 

or CapEx savings (e.g. reduction in costs by purchasing few er servers), as w ell as operational expenditure, or 

OpEx savings (e.g. less electricity required to run the servers). 

 

What is the logic behind PVTM? 

Modern operating systems (OSs) on modern non-uniform memory access (NUMA) servers are not very good at 

managing threads for performance-sensitive apps.  OSs typically balance the load across various cores rather 

than focus on application performance.  When dealing w ith performance-sensitive applications, balancing the 

load across various cores causes application latency to increase signif icantly. 

 

As an example, in Figure 8 below , there are tw o Four-CPU servers running the same w orkload.  This hypothetical 

example show s a pipeline w ith seven steps.  The OS on the left server distributes the red threads across all 

CPUs in a round robin fashion; by doing this, the distances for data movement are much greater.  Therefore, the 

time to move data betw een the threads is several times greater than in the server on the right.  For many 

applications, constraining the threads to few er CPUs can signif icantly inc rease performance. 
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Figure 8 - Scheduler behaviour w ith and without PVTM 

 

PVTM improves the probability that softw are threads w ill use less time to communicate w ith each other.  PVTM 

places threads that have high levels of communication as close to each other as possible w hilst at the same time 

avoiding context sw itches.  To achieve this, PVTM captures the follow ing information about the system: 

 Firstly, PVTM analyses the target hardw are layout f iguring out w hich cores are closest to eac h other.   

 Secondly, it analyses the communication patterns betw een threads including w hich threads use sockets, 

shared memory and locks to talk to each other.   

 Thirdly, PVTM captures the CPU utilization and current location of each thread, as w ell as opt ionally the 

position of I/O devices, such as disks and netw ork cards.  

PVTM then sends all this information to a simulator that applies a performance score to the system.  The score 

penalizes threads that have strong communication links to each other, but that are located in cores that have long 

relative distances to each other.  The score also penalizes context sw itches by avoiding moving active threads to 

the same core as other active threads as much as possible.  The simulator is then capable of running millions of 

w hat-if  analysis to determine a thread execution layout that improves the score as much as possible. 

How does PVTM work? 

As seen in Figure 9 below , PONTUS VISION Thread Manager (PVTM) has 3 main components: 

1) PVTM Agent – (pvtm-agent) – A lightw eight single threaded agent that collects information about the 

hardw are, and discovers the data communication patterns betw een threads.  PVTM Agent is w ritten in C, 

and usually uses < 1% CPU to capture its data.  To aid PVTM Agent discover the thread pinning strategies, 

the follow ing components may also be used: 

a) libpvtm-agent-preload.so – On Linux, a library that can help the PVTM Agent discover communication 

patterns betw een threads.  This can be injected in existing applications w ithout recompiling them by 

using the LD_PRELOAD environment variable. 

b) pvtm-agent.jar – an optional java agent f ile that exposes the names of Java threads to the operating 

system. To use this, you need to change your JVM command line to add the -javaagent:<path to 

the pvtm-agent.jar file>. 

c) pvtm-agent-preload-w indow s.dll – On Window s, a library that helps PVTM Agent discover 

communication patterns betw een threads.  PVTM Agent automatically connects to the applications that 

need to be monitored using this DLL along w ith remote debugging techniques .  

2) PVTM Simulator / Thread Manager – (run-threadmgr.sh) – a Java 7 standalone simulation engine that 

receives TCP/IP connections from PVTM Agent, and can take the hardw are information, as w ell as the data 

communication patterns betw een the threads to produce an optimal layout of softw are threads on the 

hardw are cores. 

3) PVTM GUI Server (run-gui.sh) – a self-contained server that hosts a brow ser-based graphical user interface.  

The GUI enables users to visualize the layout of the threads, and produce scripts for static thread pinning 

configurations.  Users can use this in environments w here PVTM Agent is unable to run. 
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Figure 9 - PVTM Architecture 

Conclusion 

As seen by the test cases above, Pontus Vision Thread Manager (PVTM) makes a signif icant performance 

improvement to the YSCB benchmark.  Tuning the threads like guitar strings improved throughput by 241% in a 

system tuned for pow er saving w ithout any special sysadmin skills required, and 65% on a system pre-tuned for 

performance. 

 

To follow  on from the guitar analogy, PVTM delivers plenty 

of pow er, w ith a low -strung action that delivers a smooth 

predictable tone you can rely on.  PVTM even allow s the 

novice axeman to become a John Mclaughlin or Eddie Van 

Halen and play 241% faster. 

 

 

 

(1) Target Hardware 
(2) Software 

Agent 

(4) Apply Thread Pinning 

(3) Score / Run Simulation 

 

 

Simulator 

GUI 

(5) Query / Off-l ine sims 
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