

PontusVision White Paper

Automatic Optimization of Hadoop Yields

throughput gains of 241%

Authors:

Leo Martins

Robin Harker

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 2

Abstract

Expecting a new user to optimise a Hadoop platform is similar to expecting somebody to be able to tune a guitar

the f irst time he picks it up: it is not going to happen. Imagine being able to get optimum performance from your

Hadoop system, as a musical virtuoso such as Dave Gilmour or Jeff Beck might get from a Gibson Les Paul or

Fender Strat’ w ithout the years of practise.

This w hite paper show s how an automated thread manager improved Hadoop throughput performance

ranging from 65% to a staggering 241%. It also show s that hyperthreading had a signif icantly negative impact

of nearly 10%. The test harness used w as YCSB using Hadoop's HBase, Zookeeper and HDFS in a single host,

and the technology used for the thread manager, as w ell as the time series graphs w as PVTM.

To illustrate the normal scheduler behaviour versus the automated thread manager, w e have produced time

series graphs w ith the core location over time of the busiest softw are threads. This show s how long they remain

on the same processor cores (w hich is the most eff icient for performance), or are moved from core to core by the

scheduler. When the scheduler moves threads, it causes a dramatically negative impact on performance (see

section "How much delay in a single server?" for more details)

So, w hy the guitar analogy, you may ask. Similar to the fret on Figure 1
1
, Figure 2 show s that a time series graph

w ith eff icient thread management looks like the strings on a guitar neck. The y-axis on the left show s the core

number of each thread. The parallel lines on the graph denote a high level of thread aff inity by pinning over time;

the jagged green time series on the top show s the total CPU utilization w ith the scale on the right y-axis

Figure 2 - Guitar strings time series w ith thread positions over time .

1 Picture from http://www.dingwallguitars.com/wp-content/gallery/prima-artist-gallery/dingwall -prima-artist-esize.jpg,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15891935

Figure 1 - Fanned Fret Bass Guitar By Sheldon Dingwall

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 3

In contrast, the jagged lines in Figure 3 show the operating system scheduler moving threads from one core to

another. This not only pollutes the data caches, but also the translate lookaside buffer (TLB) cache, w hich is a

directory of virtual to physical memory addresses.

Figure 3 - Threads moved by the OS appear as jagged lines.

The White Paper is sub-divided into the follow ing sections:

YCSB, Yahoo Cloud Serving Benchmark ..4

Hadoop ...4

Objectives ..4

Test Cases Summary ..5

System Under Test ..6

Test Harness Configuration: ...6

Hardw are Details ...7

Test Results Details ...8

How much delay in a single server? ..9

Pontus Vision Thread Manager (PV TM) ..10

What is the logic behind PVTM?...10

How does PVTM w ork?...11

Conclusion ...12

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 4

YCSB, Yahoo Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source specif ication and program suite for

evaluating retrieval and maintenance capabilities of computer programs. Testers often use it to compare relative

performance of NoSQL database management systems.

Yahoo! developed and released the original benchmark in 2010 w ith the goal of comparing performance of the

new generation of cloud data serving systems, such as BigTable, PNUTS, Cassandra, HBase, Azure, CouchDB,

SimpleDB, and Voldemort. YCSB is included in the major Hadoop distributions of Cloudera, MapR and

Hortonw orks, and this makes it ideal as a benchmark to test Hadoop hardw are setups and is w hy it w as used to

measure the benefits of automated thread pinning w ith PVTM.

The follow ing URL has further details on YCSB:

https://www.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf

Hadoop

Hadoop or the Hadoop ecosystem, w hich includes a grow ing number of components (e.g. map/reduce, Spark,

Yarn, HBase, Impala), is becoming the standard framew ork for large scale, or “Big Data” analytics. Originally ,

Google and Yahoo developed Hadoop for internet-scale analysis. Now , most major enterprises as w ell in

government research laboratories, universities, retailers, and hospitals are using Hadoop to analyse large-scale

unstructured data.

Such is the groundsw ell of support and interest in Hadoop that many of the proprietary data analysis vendors,

such as Informatica, IBM, Teradata, and Syncsort are offering integration of Hadoop components w ith their

existing analytics packages.

Objectives

The main objective of this w hite paper w as to determine w hether YCSB benchmark results using HBase on top of

the Hadoop Distributed File System (HDFS) could get increased throughput from an automated thread manager.

As w e w ere running the tests, w e also measured the impact of the follow ing environmental changes on the YCSB

throughput:

1. hyperthreading (on Sandy Bridge),

2. the impact of automatic thread management on a freshly built Broadw ell server tuned to save pow er.

The secondary objective of the w hite paper w as to make the tests easily reproducible. To do so, w e performed

all the tests in a single server hosting both a stand-alone version of HBase (version 0.98), w ith embedded

Zookeper and HDFS instances, as w ell as the YCSB client. Lastly, because disk performance may vary from

environment to environment, w e ran the tests using a tmpfs-mounted drive; this should be easily reproducible on

any server, and should display similar performance characteristics to the SUTs used here.

http://www.pontusvision.com/
https://www.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 5

Test Cases Summary

Table 1 show s a summary of the six test cases w e ran to produce this w hite paper:

Table 1 - Summary of Test Cases

Test ID SUT Intel

Micro-architecture

Hyper

Threading

Server manually

tuned for

performance

Thread

Manager

(PVTM)

Overall

Throughput

(avg of 5 tests)

T-001 Sandy Bridge (E5-2680) Enabled Yes Disabled 3987.30

T-002 Sandy Bridge (E5-2680) Disabled Yes Disabled 4365.28

T-003 Sandy Bridge (E5-2680) Disabled Yes Enabled (v23) 5305.21

T-004 Sandy Bridge (E5-2680) Disabled Yes Enabled (v24) 6596.51

T-005 Broadw ell (E5-2650 v4) Disabled No (Fresh Install) Disabled 2090.80

T-006 Broadw ell (E5-2650 v4) Disabled No (Fresh Install) Enabled (v24) 7134.89

Here is a brief description of Table 1's columns:

 The f irst column has a test identif ier, w hich is used to track the test cases throughout this document;

 The second column has the microarchitecture of the system under test (SUT) ; the Sandy Bridge

processor w e tested (E5 2680) w as launched in March 2012, w hereas the Broadw ell processor (E5

2650 v4) w as launched in April 2016;

 The third column show s w hether or not hyperthreading w as enabled in the platform; Hyperthreading

enables cores to run parallel threads of code sharing the same level 1 cache;

 The fourth column show s w hether or not the system administrator applied any previous manual tuning to

the system;

 The f if th column show s w hether the Pontus Vision Thread Manager (PVTM) w as enabled, and w hich

version w as running (as seen in the results, the new version 4.7.0.24 has dramatic performance

improvements).

 Lastly, the sixth column has the average overall throughput over f ive runs for each test case. Table 2

show s the full set of throughput f igures reported by YCSB for each of the tests, w hich w ere used to

calculate the sixth column in Table 1:

Table 2 - Full set of test results across all 5 runs for each test case

Test Case Average Run 1 Run 2 Run 3 Run 4 Run 5

T-001 3987.30 4656.73 3822.06 3654.58 3797.29 4005.85

T-002 4365.28 4165.00 3991.67 4883.58 4174.46 4611.72

T-003 5305.21 5344.91 5206.76 5275.79 5321.16 5377.41

T-004 6596.51 6540.39 6664.53 6617.48 6619.01 6541.12

T-005 2090.80 2352.11 2056.16 1819.38 2031.86 2194.48

T-006 7134.89 7278.97 7099.15 7022.67 7129.11 7144.54

The baseline test T-001 on the Sandy Bridge server started w ith hyperthreading enabled, but this yielded poor

results, so all other tests had hyperthreading disabled. Unfortunately, w e did not have time to run hyperthreading

tests in the Broadw ell platform to see w hether there are any improvements in behaviour w ith a new er platform.

Disabling hyperthreading on the Sandy Bridge platform improved performance by 9.5% w hen compared to test

case T-002's results. Note that w e used PVTM to do a 'soft-disable' of the hyperthreads, making them 'junk

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 6

cores' rather than physically sw itching them off on the BIOS. On previous tests, w e have noticed that this has the

same effect as changing the BIOS settings, w ith the advantage of not requiring a system administrator to log into

the server's LOM interface and reboot the server.

Test cases T-003 and T-004 show the impact of an automatic thread manager on system performance. Test

case T-003 show s the impact of running version 4.7.0.23 of PVTM to manage threads, w hich increased

performance by 21.5% w hen compared to T-002, and by 33.5% w hen compared to T-001. Similarly, T-004

show s that the latest version of PVTM (4.7.0.24) had an even bigger performance boost of 51.11%, or, w hen

compared to T-001, a 65.44% performance boost. The key difference betw een PVTM versions .23 and .24 is a

new mechanism that PVTM uses to highlight the busiest I/O threads in the system. This enables PVTM to

quickly identify and move the most relevant I/O threads as close to each other as possible, resulting in massive

performance boosts; the only dow nside of this new technique (w hich can actually be sw itched on or off) is

increased CPU utilization; how ever, the results are w ell w orth the cost.

The most staggering improvements were the 241% betw een the freshly installed Broadw ell system on test

cases T-005 and T-006 w ith and w ithout PVTM 4.7.0.24. This show s how PVTM can have a massive impact on

a fresh installation w ithout requiring any experience to tune the system. This 'freshly installed' state of the server

is quite common in the industry, w here system administrators build servers to reduce operational expenditure

(OpEx) by conserving pow er during idle periods. Though this w orks w ell for idle systems, the dow nside is a

dramatic impact in performance w hen the systems are used. When users have long-running jobs, the extra

241% of time it takes to run the w orkload often negates the idle pow er savings, costing more in OpEx.

Nevertheless, this configuration reflects the state of several data centres that have general-purpose servers.

System Under Test

The follow ing sections describe the softw are configuration as w ell as the hardw are details of the SUT for the six

test cases

Test Harness Configuration:

To setting up the tmpfs partitions, w e added the follow ing entries to the /etc/fstab f ile:

tmpfs /tmp tmpfs defaults,noatime,nosuid,nodev,mpol=local,mode=1777,size=10G 0 0

tmpfs /home/ycsb/hbase/ tmpfs

defaults,noatime,nosuid,nodev,mpol=local,mode=1777,size=10G 0 0

And then w e executed the follow ing commands (as root):

mount -a

chown -R ycsb:ycsb /home/ycsb/hbase

The first line ensures that the /tmp directory is mapped into memory, and the second line ensures that the

/home/ycsb/hbase directory is mapped into memory. For convenience, the locations of the tmpfs memory areas

w ere set to be local to the threads accessing them.

The YCSB configuration and start-up scripts used for all six tests w as identical, here is the bash script used:

for ((i=0;i<5;i++));

do

 sudo sysctl -w vm.drop_caches=3;

 /home/ycsb/hbase-0.98.16.1-hadoop1/bin/start-hbase.sh;

 sleep 60;

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 7

 /home/ycsb/ycsb-0.5.0/bin/ycsb run hbase098 -P /home/ycsb/ycsb-

0.5.0/workloads/workloadcustomread -jvm-args=-javaagent:/home/ycsb/pontus-

vision/4.7.0/linux/pvtm-agent.jar -cp /home/ycsb/hbase-0.98.16.1-

hadoop1/conf -p table=usertable -p columnfamily=family;

 /home/ycsb/hbase-0.98.16.1-hadoop1/bin/stop-hbase.sh;

done > ~/T-00x.out 2>&1 &

Where:

 ~/T-00x.out w as replaced w ith the relevant test ID (e.g. T-001.out).

The YCSB w orkload configuration w as set as follow s:

[ycsb@fsl-0032 ~]$ cat /home/ycsb/ycsb-0.5.0/workloads/workloadcustomread

recordcount=1000

operationcount=1000000

workload=com.yahoo.ycsb.workloads.CoreWorkload

readallfields=true

readproportion=0.5

updateproportion=0.5

scanproportion=0

insertproportion=0

requestdistribution=zipfian

Hardware Details

The specif ication of the system under test for test cases T-001 to T-004 w as the follow ing:

2 x E5-2680 (20MB Cache, 2.7 GHz) 8-cores per CPU socket (launched in March 2012)

Memory - 64 GB - 1333 MHz (8GB modules)

Operating system, RHEL 7.2, release 7.2.1511 (Core)

N.B. This system under test was kindly provided by Intel Corporation

The specif ication of the system under test for test cases T-005 and T-006 w as the follow ing:
Super micro SYS-6028TP-HTR, dual socket, TWIN Square server, w ith Broadw ell chipset

2 x E5-2650 v4 (30MB Cache, 2.20 GHz) 12-cores per CPU socket (launched in April 2016)

Memory - 128GB - 2133 MHz (16GB modules)

Operating system, RHEL 7.2, release 7.2.1511 (Core)

N.B. This system under test was kindly provided by XMA Ltd, w w w .xma.co.uk

http://www.pontusvision.com/
http://www.xma.co.uk/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 8

Test Results Details

The time series graphs on the next page show the thread layouts during the entire runtime of test cases T-001 to

T-004. The jagged lines of the tw o graphs (Figure 4 and Figure 5) reflect the normal Linux scheduler behaviour

w ithout a thread manager. This show s threads moving to different cores, w hich causes several tiny delays over

the total test run.

In contrast, Figure 6.and Figure 7 show how PVTM creates smooth parallel lines. This “guitar string” pattern

maintains much better thread-to-core aff inity, w hich delivers low er latency. The main reason for the performance

boost is a reduction in context sw itching, w hich causes translate look-aside buffer (TLB) and cache misses. This

enables the threads to focus more on the current tasks rather than having to w aste time finding previously

cached memory addresses through TLB misses, and re-fetch data from slow remote locations through cache

misses. The right hand-side axis on these time series also show s the CPU utilization of all the threads in the

process. Comparing f igures 5 and 6 show s an increase of around 200% CPU utilization betw een the tw o tests.

At f irst site, this may seem high; how ever, in the Sandy Bridge SUT that only represented around 15% of

difference in increased pow er consumption (from 100 to 115 w atts) -- w ell w orth the added performance boost.

Figure 6 Thread Positions over time for T-003 (5305.206 ops/sec - T-001 baseline gain = 33.05%

Figure 4 Thread positions over time for T-001 (3987.301 ops/sec)

Figure 5 Thread positions over time for T-002 (4365.283 ops/sec - T-001 baseline gain = 9.48%)

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 9

Figure 7 Thread Positions over time for T-004 (6596.506 ops/sec - T-001 gain baseline gain = 65.44%

As the next section w ill show , the "guitar string" patterns of thread management amount to many improvements

of tiny amounts of time. The tiny delays that PVTM saves w ith thread management only last hundreds of

nanoseconds to microseconds; at f irst, these seem negligible, how ever, as seen in the test results, their

cumulative impact even over a few minutes of tests is enormous. The next section show s more details on how

much delay there is in a single server.

How much delay in a single server?

Most people think that the delays inside of a single server are negligible; how ever, the cumulative effect of these

delays is very large. The speed at w hich threads communicate w ith each other can be over one hundred (100)

times slow er depending on w hich cores they are running in a single server. The relative distance betw een the

CPU cores and their memory access affects how quickly data can move betw een threads.

Table 3 show s rough relative speeds of sending data betw een threads measured on a four CPU server. This

table reflects the access speed of memory in different cores, as w ell as the amount of time that it takes to re-fetch

data from main memory if not cached. Access speed is relatively fast w hen the CPU accesses data stored in

level 1, level 2 and level 3 caches. The access speed is slow er w hen the CPU accesses local memory, slow er

w hen the CPU access remote memory from a neighbouring CPU, and even slow er w hen the memory is not in a

local, but a remote neighbour w ithout a direct cross bridge.

Table 3 - Distance Ratio Table

Level 1

Cache

Level 2

Cache

Level 3

Cache

Local

Memory

Remote

Memory

No-Cross

Bridge Memory

1 2 6 10 83 113

It is important to notice that these speeds can vary dramatically depending on the thread behaviour. As such,

applications w ill seldom alw ays run at the fastest speed or at the low est speed. As the Intel Hasw ell stats below

show , the time to access memory can vary from 4 cycles to access L1 to over 45 cycles plus around 57ns to

access main memory. If a thread never moved, and alw ays accessed memory that w as w ithin the TLB and in L1

cache, it w ould use around 4-5 cycles to access the data. In contrast, a thread constantly being moved across

cores (in the same CPU) w ould be missing L1/L2 cached data, having to go to L3 or main memory and having its

translate lookaside buffer (TLB) trashed w ould use 36 cycles + 9 cycles + 57ns to access the data. In reality,

threads w ill never behave as perfectly as the 4-5 cycles 100% of the time; how ever, w hen threads are not pinned,

they tend to be constantly in the misbehaved state. By managing the location of threads, PVTM is trying to

increase the chances of the good 4-5 cycle behaviour.

Here are some stats for Intel’s Hasw ell processor:

 L1 Data Cache Latency = 4 cycles for simple access via pointer

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 10

 L1 Data Cache Latency = 5 cycles for access w ith complex address calculation (size_t n, *p; n = p[n]).

 L2 Cache Latency = 12 cycles

 L3 Cache Latency = 36 cycles

 RAM Latency = 36 cycles + ~ 57 ns

 L1 Data TLB - miss penalty of 1-8 Cycles , w ith 4x1Gb/ 32x2Mb / 64x4Kb entries

 L2 Data TLB - miss penalty of 9 -22 cycles w ith 1024 2Mb / 1024 x 4Kb entries

Note that one cycle is equal to the inverse of the core's clock speed, so if a core is running at 2.2GHz, one cycle

is 1 / 2.2GHz ~= 4.54 ns

The next section explains at a higher level how PVTM uses these various time constraints to f igure out the best

location of the threads in a server.

Pontus Vision Thread Manager (PVTM)

PVTM speeds up softw are applications by better placing softw are threads onto hardw are cores to maximise

performance. A secondary advantage, (w hich is arguably as important), is that it provides a great insight of

application behaviour. PVTM is able to show at any point in time w here threads w ere running, how much CPU

utilization they had, and w hich threads w ere communicating w ith each other. For Java applications, PVTM also

exposes the Java thread names to the operating system, providing even more clarity of w hat is happening w ithin

the JVM.

A large scale Hadoop analysis may take hours or days to run and, due to its resilient design, requires large

numbers of physical servers; 100-1,000 servers is not uncommon, so the costs of using Hadoop are substantial

and w ays of reducing the cost are of interest to all. PVTM is an accelerator, so allow s you to either, run more

analyses on your Hadoop infrastructure, or reduce the total number of servers and so make capital expenditure,

or CapEx savings (e.g. reduction in costs by purchasing few er servers), as w ell as operational expenditure, or

OpEx savings (e.g. less electricity required to run the servers).

What is the logic behind PVTM?

Modern operating systems (OSs) on modern non-uniform memory access (NUMA) servers are not very good at

managing threads for performance-sensitive apps. OSs typically balance the load across various cores rather

than focus on application performance. When dealing w ith performance-sensitive applications, balancing the

load across various cores causes application latency to increase signif icantly.

As an example, in Figure 8 below , there are tw o Four-CPU servers running the same w orkload. This hypothetical

example show s a pipeline w ith seven steps. The OS on the left server distributes the red threads across all

CPUs in a round robin fashion; by doing this, the distances for data movement are much greater. Therefore, the

time to move data betw een the threads is several times greater than in the server on the right. For many

applications, constraining the threads to few er CPUs can signif icantly inc rease performance.

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 11

Figure 8 - Scheduler behaviour w ith and without PVTM

PVTM improves the probability that softw are threads w ill use less time to communicate w ith each other. PVTM

places threads that have high levels of communication as close to each other as possible w hilst at the same time

avoiding context sw itches. To achieve this, PVTM captures the follow ing information about the system:

 Firstly, PVTM analyses the target hardw are layout f iguring out w hich cores are closest to eac h other.

 Secondly, it analyses the communication patterns betw een threads including w hich threads use sockets,

shared memory and locks to talk to each other.

 Thirdly, PVTM captures the CPU utilization and current location of each thread, as w ell as opt ionally the

position of I/O devices, such as disks and netw ork cards.

PVTM then sends all this information to a simulator that applies a performance score to the system. The score

penalizes threads that have strong communication links to each other, but that are located in cores that have long

relative distances to each other. The score also penalizes context sw itches by avoiding moving active threads to

the same core as other active threads as much as possible. The simulator is then capable of running millions of

w hat-if analysis to determine a thread execution layout that improves the score as much as possible.

How does PVTM work?

As seen in Figure 9 below , PONTUS VISION Thread Manager (PVTM) has 3 main components:

1) PVTM Agent – (pvtm-agent) – A lightw eight single threaded agent that collects information about the

hardw are, and discovers the data communication patterns betw een threads. PVTM Agent is w ritten in C,

and usually uses < 1% CPU to capture its data. To aid PVTM Agent discover the thread pinning strategies,

the follow ing components may also be used:

a) libpvtm-agent-preload.so – On Linux, a library that can help the PVTM Agent discover communication

patterns betw een threads. This can be injected in existing applications w ithout recompiling them by

using the LD_PRELOAD environment variable.

b) pvtm-agent.jar – an optional java agent f ile that exposes the names of Java threads to the operating

system. To use this, you need to change your JVM command line to add the -javaagent:<path to

the pvtm-agent.jar file>.

c) pvtm-agent-preload-w indow s.dll – On Window s, a library that helps PVTM Agent discover

communication patterns betw een threads. PVTM Agent automatically connects to the applications that

need to be monitored using this DLL along w ith remote debugging techniques .

2) PVTM Simulator / Thread Manager – (run-threadmgr.sh) – a Java 7 standalone simulation engine that

receives TCP/IP connections from PVTM Agent, and can take the hardw are information, as w ell as the data

communication patterns betw een the threads to produce an optimal layout of softw are threads on the

hardw are cores.

3) PVTM GUI Server (run-gui.sh) – a self-contained server that hosts a brow ser-based graphical user interface.

The GUI enables users to visualize the layout of the threads, and produce scripts for static thread pinning

configurations. Users can use this in environments w here PVTM Agent is unable to run.

http://www.pontusvision.com/

Auto-Tuning Hadoop White Paper-2016

www.pontusvision.com July 2016 Page 12

Figure 9 - PVTM Architecture

Conclusion

As seen by the test cases above, Pontus Vision Thread Manager (PVTM) makes a signif icant performance

improvement to the YSCB benchmark. Tuning the threads like guitar strings improved throughput by 241% in a

system tuned for pow er saving w ithout any special sysadmin skills required, and 65% on a system pre-tuned for

performance.

To follow on from the guitar analogy, PVTM delivers plenty

of pow er, w ith a low -strung action that delivers a smooth

predictable tone you can rely on. PVTM even allow s the

novice axeman to become a John Mclaughlin or Eddie Van

Halen and play 241% faster.

(1) Target Hardware
(2) Software

Agent

(4) Apply Thread Pinning

(3) Score / Run Simulation

Simulator

GUI

(5) Query / Off-l ine sims

http://www.pontusvision.com/

	Abstract
	YCSB, Yahoo Cloud Serving Benchmark
	Hadoop
	Objectives
	Test Cases Summary
	System Under Test
	Test Harness Configuration:
	Hardware Details

	Test Results Details

	How much delay in a single server?
	Pontus Vision Thread Manager (PVTM)
	What is the logic behind PVTM?
	How does PVTM work?

	Conclusion

